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Executive Summary

This deliverable describes the systkwel integration of the initial softwarenvironment
(firmware, OS services, runtime, hypervisor services, virtualization actiyitgesycribed in

D3.1, and the mukboard hardware prototype designed i5.D Throughout this integration
process, both the software and hardware platform have been tuned in order to provide efficient
use of resources. Such tuning involves the design and implementation of the Ultrascale+
coherence islanduntime optimizations fordcality and latencyhigh-speed lowlatency inter

chip communication, lovpower techniques, and design of scalable HW sensors monitoring
infrastructure with minimal intrusiveness and overhead.
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1 Introduction

The ExaNoDe project is developing a unique HPC system architecture founded on the
UNIMEM architecture, which is also the basis for the related projects EUROSERAMER

ExaNeSt. A system that implements UNIMEM consists afiember of computational nodes
connected through a custom network. Each node typically contains multiple processing cores,
which communicate amongst themselves using coherent shared memory as provided by the
hardware. Distinct nodes communicate using UNIMEM g | o b al shared addr
which provides noitoherent loaistore and RDMA access to any other remote node. The
UNIMEM hardware architecture is exposed to user space via the Global Shared Address
Space (GSAS), usapace RDMA, mailbox and reneallocator APIs defined in D3.6.

This deliverable describes the systlwel integration of the initial software environment
(firmware, OS services, runtime, hypervisor services, virtualization actiyitiescribed in

D3.1, and the mukboard hardwar@rototype designed in ®1. Throughout this integration
process, both the software and hardware platform have been tuned in order to ensure efficient
interactions between the different software and hardware components.

The design and implementation of the Ultrascale+ coherence island solves the issue of high
inefficiency of the Juno PCle linly employing Xilinx Ultrascale+ FPGAs which were made
available to the project towards the end of the first year. We furtherlukesice SerDes link
architecture for igh-speed lowlatency interchip communication, as well as lepower
techniques to reduce virtualization overhead and power consumption, and the design of
scalable HW sensors monitoring infrastructure with minimalgi#eness and overhead.

The GSAS environment API, an extension of the global address space communication
mechanism enabled by the UNIMEM architecture, allows applications to allocatk/date

virtual shared address space, to perform atomic reads, amitesiany other operations on the
allocated space by using appropriate library calls. The-gmre initiated DMA library,
capable of transferring to/from any memory location throughout the whole global memory
space, exposes the functionality of the DMAgmes that UNIMEM provides to user space.
Sockets over RDMA andmaailbox-style notification mechanism are also provided.

GPI is an opersource communication library that implements the GASPI standard PGAS
API. It provides a portable and lightweight APkt leverages remote completion and-one
sided RDMAdriven communication, both being efficiently supported by the UNIMEM
architecture. As such, GPI is an appropriate communication library to benefit from and
evaluate the UNIMEM architecture.

1 http://www.euroserveproject.eu/
2 http://www.exanest.eu/
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2 Prototype and Global Shared Address Space (FORTH)

The UNIMEM architecture, introduced in the Euroserver project, aims to provide a scalable

distributed system solution enabling direct remote memory accesses and shared memory. The
UNIMEM architecture can be deployedarsystem consisting of several "coherence islands”,
where a coherence island includes one or more processors, a cache coherent memory, various
peripherals and an external port for remote accesses. All accesses inside the coherence island
are cache coherenin the ExaNoDe architecture, a Xilinx Ultrascale+ FPGA is one such

coherence island and a collection of FPGAs form the ExaNoDe system which supports the
UNIMEM architecture. Each FPGA supports a physical address mapping for accessing its
local memory, & local peripherals and the external world (i.e. memories and peripherals of

other FPGASs in the UNIMEM architecture). This "window" to the external world provides
direct memory and I/O accesses (through standard load/store instructions) to other coherence
islands and it is used to provide a global address space, as shéworéll. The physical

interface to the remote world can be anything (PCle, AXI, Ethernet, etc.).

Worker Worker
Processor | Processor DMA Processor | Processor DMA
Local Cache Coherent Interconnect Local Cache Coherent Interconnect
window window
i ' ‘ !
DMC DMC
[ [
v v
Global PHY to Global PHY to
toPHY || Global toPHY || Global DRAM
‘ Global Interconnect ‘
Figurel: Accesses in the external fAwindowo

Within ExaNoDe we first extended the UNIMEM architecture of the hased prototype, as

described in D5.1. Lovatercy communication between the coherence islands is very critical
for the UNIMEM architecture. The coherence island in the UNIMEM architecture of the
Juncebased prototype is a Juno board. A Xilinx KCU105 board, supporting a Xilinx
Ultrascale FPGA, is connestt to the PCle slot of the Juno board in order to provide external

memory access.

of

t

he

connectivity. Since the latency of the PCle link is very long (about 200 CPU clock cycles) the

communication latency between the Jdrased coherence islands $® high that the
UNIMEM architecture is inefficient. When ExaNoDe decided to use and extend the Juno
based prototype there was no other option since it was the only system employaitg 64

ARMvVS8 processors which support an external window through the PCle link.

ExaNoDe resolved théatency issue of the Jurmased prototype by employing Xilinx

Ultrascale+ FPGAs which were made available to the project about one year ago. This
effectively replaced the Juno prototype architecture, which uses a discrete CPU and FPGA
connected through &¥e link, with an FPGA with integrated CPU cores.
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Figure 2: Latency of Juno coherence island and Ultrascale+ coherence island.

Thus ExaNoDe further ported the UNIMEM architecture onto the Tbased prototype.

This is the second interim prototype that uses Xilinx Zynq UltraScale+ FPGAs and
development boards marketed by Trenz Electronic GmbH, a company that provides
development services for the electronics industry. Each Xilinx Ultrascale+ FPGA in this
prototypeis a UNIMEM coherence island. As shownHigure 2 the latency to the external
world is a few cycles and thus the communication latency between the coherence iskands wa
highly improved compared to the Juhased prototype.

This prototype is meant to assist in the development of a number of key components of the
ExaNoDe system which are included in this deliverable. The major building blocks of this
prototype are the TE® Multi-Processor SoC module that mounts on a TEBF0808 baseboard.
The prototype is comprised of multiple instances of those two components in an appropriate
configuration. This prototype is served as a development platform for a number of ExaNoDe
partners hence, although based at FORTHOsS pr e mi
that need it.

The UNIMEM architecture has been reproduced using Trenz hardware in a setup such as the
one presented iRigure 3. In effect, each Coherence Island is implemented using a single pair
of the TEO808 module and TEBF0808 baseboard (as well as the JTAG/UART adapters,
although their role secondary). This candmsily performed since the UltraScale+ FPGA of
TEO0808 feature$4-bit quad application processors along with significant reconfigurable
resources.

Coherence Island Coherence Island

Processors Peripherals Processors Peripherals

Coherent
Interconnect

WorkerN

TEBF0808

I~
TEsos N3

Figure 3: UNIMEM architecture where each coherence island is a Trenz kit.
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The FP@\ used on the Trenklode is the same as the one to be used in the final ExaNoDe
prototype. The Trenbased prototype will be actually a smaller version of the final prototype.

It will connect several Xilinx Ultrascale+ FPGAs over higipeed links, in a siitar way as

the final ExaNoDe prototype. The only difference is that the final ExaNoDe prototype will be
denser and it will support higher throughputs, more memory and it will demonstrate the use of
system in package and interposer technoldigure 4 shows the Trenbased prototype at
FORTH consisting of 8 Trenz Kits.

Figure 4: The Trenz-based prototype at FORTH (on the left) and the Trenkit (on the right).

FigueSs hows a portion of the AGI obal System Ad«
Zynq Ultrascale+ FPGA (see Zynq Ultrascale+ Technical Reference Mpnddie

Ultrascale+ Address Mappingqvides regions of about 384 GB in total to the external world
(M_AX|_HPMO_FPD and M_AXI_HMP1_FPD regions).

1 T 1— 178 e R
PCle ! | 256GB i
- j 51268

T T
M_AXI_HPM1_FPD H | 2468

| T
M_AXI_HPMO_FPD . | 2468

DDR Memory Controller E 3268 \\‘ R Coh. Island 15 14 GB
pcle | see] Coh.lsland 14 4GB/ mailbox, DMA engines, | afew
M_AXI_HPM1_FPD I Y ‘ ¥ MB'’s

M_AXI_HPMO_FPD ace atomic, etc.

reserved | 1268

[CSU, PMU, TCM, OCM [ 408 !

LPD Slaves 12M8 B .,/

LPD Slaves, CoreSight Ext. 16M8 Coh. Island 3 4GB Trenz memory 268

FPD Slaves 16MB K feol

wéssrved T ‘ Coh. Island 2 4GB

RPU LL port 1M8 "\

CoreSig::J STMs 15M8 Coh. Istand 1 '4 GB

reserved 128 M8 Coh. Island 0 4GB

Lower PCle 256 MB

Quad-SPI 512M8

3GB

M_AXI_HPM1_FPD 256 MB

M_AXI_HPMO_FPD 256 M8
3 https://www.xilinx.com/support/documentation/user_guides/ugd3@istultrascale
trm.pdf
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Figure 5: Address mapping of Xilinx Ultrascale+ and mapping to the UNIMEM global address
space.

The external window of e Zynqg Ultrascale+ FPGA of the Trebased prototype can be
statically partitioned into memory domains, each one providing accesses to abdsedz
coherence island as shown Rigure 5. Since each Trenz kit supports only 2GB of DRAM
memory we statically map the external window to the global address space of the UNIMEM
architecture allowing each Trenz board to access directly the whole UNIMEM space. In this
way a Trenzbased coherence island can directly access any memory in the system without the
need of any complicated translation mechanism in hardware.

3 Software Environment Porting to UNIMEM

The current implementation of the UNIMEM architecture exposes a set of programming
frameworks as shown iRigure6. These programming frameworks provide a powerfub§et
communication mechanisms to developers and to runtime systems, resulting in systems that
are scalable for large numbers of nodes. These programming environments are the following:

1. The Global Shared Address Space environment (abbr. GSAS environmernbeand
communication mechanisms that it provides. The GSAS environment defines an
application interface (API) that is an extension of the global address space enabled by
the UNIMEM architecture. GSAS gives the ability to processes that run across remote
nodesto communicate in a way resembling a system that provides coherent shared
memory communication. More specifically, the GSAS environment allows the
applications to allocate/emlocate virtual shared address space, to perform atomic
reads, writes and marother operations on the allocated space by using appropriate
library calls.

2. Userspace initiated DMA library. This library facilitates usgace initiations of
DMA transfers. The DMA engine of the underlying system is capable of transferring
to/from any nemory location throughout the whole global memory space. The main
part of this work aims to expose the functionality of the DMA engines that UNIMEM
provides to user space.

3. Sockets over RDMA. With Sockets over RDMA, a UNIMEM system can utilize low
latencycommunication among local nodes, by means of fast RDMA transactions that
bypass the kernel network stack.

4. Furthermore, we give a description of mailkgiyle notification mechanism with
which a kernelor userspace application can send and receive messigand from
remote nodes, thus enabling remote notification capability.
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BT Apps Apps
(optimized for UNIMEM) (Unmodified) (Unmodified)
Global Shared Address Runtime Systems
Space (Optimized for
- 4 UNI]rlEM}
UNIMEM Interfaces Sockets optimized for
(Remote DMA, etc.) UNIMEM
(Modified Ifbc)
UNIMEM testbed
(RDMA, virtual mailbox, virtual packetizer, remote memory access)

Figure 6 The UNIMEM programming interfaces, and their interactions.

In the following section, we provide an overview of the UNIMEM hardware and software
interfaces. Details have already been documented in Deliverable D3.6 (submitted in M13). In
this deliverable we focus on hardware and softwardesign aspects of the global shared
address space that we have designed and implemented on the gemnenatbon of UNIMEM
prototypes.

3.1 GSAS Environment (FORTH)

In this section, we describe the current generation of global shared address space (abbr. GSAS
environment) and the provided mechanisms for iptecess communication across different

nodes (i.e., Trengrototype nodes).

Our global shared address space defines an application interface (i.e., API) that gives the
ability to processes that run across remote nodes to communicate in a way resembling shared
memory communication. More specifically, the GSASismnment allows the applications to
allocate/deallocate shared address space, to perform reads, writes and other atomic operations
on the allocated space by calling the appropriate library calls.

In the GSAS environment, all the read, write and atomicatjgms on the allocated address
space are performed via special dseel library calls and not via conventional load and store
instructions provided by the ARM processors. Since these calls areuskerthey do not

involve operating system's kernethus they are a loMatency, fast communication
mechanism. Although this communication mechanism is efficient, local memory accesses
performed by the conventional ARM processor instructions are more efficient. Thus, the
communication mechanisms providedthg GSAS environment should not be used in cases
that do not involve communication among remote processdsglme 7, the hardware and

the software stack that the GSA&nvironment is built on is presented.
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User level library for User level library for User level library for User level library for
virtualized virtualized virtualized virtualized
mbox/packetizer mbox/packetizer mbox/packetizer mbox/packetizer
\, / \, J . " J
Drivers for virtualized Drivers for virtualized Drivers for virtualized Drivers for virtualized
mbox/packetizer mbox/packetizer mbox/packetizer mbox/packetizer
Trenz prototype board Trenz prototype board Trenz prototype board Trenz prototype board
#1 #2 #3 #4
L I ' e o . o L e
] ] ] |
UNIMEM Interconnect

Figure 7 Hardware and Software Stack for the GSAS Environment.

3.1.1 Hardware Components (FORTH)

We first discuss the hardware components that are the major communication components of
the GSAS avironment. A thread in order to be able to issue an atomic request on the GSAS
environment, i.e., to send a packet describing the atomic operation to some remote node and
thus to some remote atomic service, it should be possible to allocate one irdetfectocal
virtualized mailbox and one interface of the local virtualized packetizer. By using the
allocated interfaces of the local mailbox and the local packetizer, the thread has the ability to
send network packets (using the packetizer interfaceyibegsy atomic requests and receive
responses (using the mailbox interface) for the issued requests. More specifically, a thread is
able to send packets of size of 256 bits to an interface of some remote or local mailbox by
using the allocated packetizetérface. Moreover, the issuer of the atomic operation is able to
receive the response send by the atomic service to the allocated interface of the local
virtualized mailbox.

The first interface of the virtualized mailbox starts at an address with safdi300 and it is

only used by the atomic service of the node that the mailbox resides on. All other interfaces
can be used by applications and they are allocated aatlodated by the atomicity driver.
Therefore, at most 63 threads are able to performatipes on the GSAS environment to

each node. Each interface occupies 4096 bytes in address mapping, which is equal to
operating systembés (Linux) page si ze. Thus,
map one interface of the virtual mailboxtte address space of exactly one thread. This kind

of mapping allows threads to perform ug®mrel accesses to the component.

The virtualized packetizer is another important hardware component for the GSAS
environment. The virtualized packetizer allows tiser threads @tomically send packets of

256 bits to any interface of any local/remote virtualized mailbox without having to make a
memory mapping of the remote mailboxes to their address space. It is worth noting that by
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avoiding to map remote mailbaxnt er f aces directly to a thre.
disallow a thread to read the contents placed there by other threads. This and the ability to
send packets to remote mailbox interfaces only through the packetizer enables protection on
the datastored in remote mailboxes. Moreover, each packetizer interface adds a unique prefix
to the transmitted packet indicating the sender thread. The atomicity driver, which is a kernel
entity, sets up this prefix and thus, it is a trusted entity. This giveslthity to the atomic
service to identify in a secure way the sender of the packet and thus, to decide if the atomic
operation that is requested is either valid or not. Therefore, the packetizer component is not
only necessary for atomically transmittjrigut also for providing the appropriate features to

the atomic service for secure detection the source of the transmitted packets.

Similarly to the virtualized mailbox, virtualized packetizer is equipped with 64 interfaces. The
first interface of the vidalized packetizer starts at an address with suffix 0x0000 and
similarly to the virtualized packetizer, it is only used by the atomic service. All other
interfaces used by applications and they are allocated arallodated by using the
functionality thatthe atomicity driver provides. Each interface occupies 4096 bytes in address
mapping, which is equal to operating systemd
is also equipped with an extra interface that is accessible only by the atomiggty @his is

the 64" interface and starts at an address with suffix 0x40000. The functionality of this
interface provides the ability to the atomicity driver to set up a unique identification number
for each running thread in the whole system. This ifleation number is added as a prefix to

each transmitted packet giving the ability to the receiver thread (i.e., any remote atomic
service) to securely identify the origin of the packet.

3.1.2 Software Components (FORTH)

We now describe the main software maduthat are used on the GSAS environment. These
software modules are the following (deigure 7 for the whole hardware and software stack
used by the GSAS environment).

1. The atomicity driver.

2. The atomic service.

3. The software library that initiates atomic operations.

We first describe the role of the atomicity driver in the GSAS environment. Thec@tom
driver i s responsi bl e for distributing the
threads. The role of the atomicity driver is to grant one out of the 63 interfaces of the
virtualized mailbox and one out of the 63 interfaces of the virtedligacketizer to each
system thread that wants to perform atomic operations on the GSAS environment. At the first
time that a thread that wants to use the functionality of the GSAS environment, it allocates
one interface of the virtualized mailbox and onéerface of the virtualized packetizer.
Afterwards, the thread by using the functionality of the library that initiates the atomic
operations is able to use the allocated interface in order to perform atomic operations. The
atomicity driver guarantees tha&ach thread owns at most one atomic interface of the
virtualized mailbox and at most one interface of the virtualized packetizer. Furthermore, by
setting the appropriate memory mappings the atomicity driver guarantees that each thread is
not able to acss the hardware resources (i.e., the interfaces of the virtual mailbox or the
interfaces of virtual packetizer) of threads that are spawned by different processes. As it was
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already pointed out, the atomicity driver set ups at the initialization of theS@&amironment,

one globally unique identification number on each of the interfaces of the packetizer. This
gives the ability to the atomic service that runs on some node to safely distinguish which
thread issues any atomic request.

The main role of the atoic service is to serve the requests that are delivered on its local
mailbox for the part of the address space that is responsible for. More specifically, the atomic
service polls the interface 0 of the local mailbox until a packet that describes an atomic
request arrives. Whenever such a packet arrives, the atomic service decodes the request,
applies the described operation if it is valid (i.e., the target address and the operation code are
valid, and the issuer thread has the appropriate access rigpterfeom the operation).
Afterwards, the atomic service replies to the issuer by writing the response of the operation in
the issuerés mail box.

Apart from applying atomic operations on the address space of the GSAS environment,
atomic service is responsgbfor servicing requests for memory allocation and for spawning
new processes. It is noticeable that whenever no request is pending on a node for a long time,
the atomic service of this node enterskeepmode (i.e., gets the lowest priority among the
other threads running on processing core 0) returning most of the processing resources to the
other running processes. Whenever a new request is received, the atomic service exits from
sleep mode. By following this kind of policy for sharing processing messuon core 0, in

case that the address space of some node is not used, the atomic service of this node
negligibly affects the performance of the other running applications.

Lastly, we describe the role of the udevel library that is responsible foriiiating atomic
operations. Whenever, an application thread wants to perform an atomic operation (i.e., Read,
Write, CAS, etc.), it calls the appropriate function of the el library in order to initiate

the respective atomic operation. At first, sthtall checks if the system is appropriately
initialized, i.e., one interface of the virtualized mailbox and one interface of the virtualized
packetizer are allocated for the calling thread. In case that the environment is not
appropriately initialized, # library initializes it through the atomicity driver. Afterwards, the
atomic operation is encoded in a network packet and this packet is send to the atomic service
on the appropriate remote node.

3.2 OS & Virtualization (VOSYS, FORTH)

In the Linux ecosystem, there are several open source and proprietary solutions to achieve
virtualization. Among these, KVM has been chosen as virtualizatialing solution in the
context of ExaNoDe. KVM for ARM relies on the ARM virtualization extension which is an
hardware IP that implements all the hardweaglated support required by virtualization. Such
hardware features are accesses by the host OS via a Linux kernel driver (KVM).

KVM for ARMv8 (architecture of the target platforms) is part of the upstreamaftieal)

Linux version and is maintained by the community. However, it was not enabled by default in
the target boards configuration. In this context, VOSYS tested KVM support on the Trenz
board, which required an dwc kernel configuration for enabliige KVM module.
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The use of virtualization as key component to improve reliability and manageability of the
system makes more challenging the use of libraries that need to interface to physical
resources. Among other things, virtualization introducesdalitianal layer that isolates the
execution of the guest CPUs from the external devices, making the direct access to such
devices not possible. Several solutions are available to tackle this problem, however, all of
these add additional overhead that fwabe quantified and kept to a minimum. As described

in D3.4, an APl remoting technology is being
processes to use the UNIMEM AP, filling the gap introduced by the virtualization layer.

One of the key benefrelated to the API remoting technique is abowutisability of the code

already written: applications relying on UNIMEM do not require any adaptation to be run
inside the virtual machine. From the functional perspective, this technique does not irtroduce

any limitation and can be transparently integrated in the rest of the system. Being exclusively

a software solution, the remoting technology can be easily integrated in the ExaNoDe
prototype as it will affect mainly the virtualization layer being useENIQ and KVM). The

remoting technology will certainly introduce some overhead since some copy of data and
processing is required by the transport layer (further details in D3.4). In Section 3.2 this
overhead will be analysed and some direction to mitigatee p |l at f or més power
will be detailed.

3.3 Runtime Systems

A key aspect in providing a software environment on top of UNIMEM is to port and tune the
runtime systems of the ExaNoDe programming models, taking into account the specificities
of this architecture to optimize performancsatical aspects such as communication,
synchronization and scheduling. This section first details the contributions of UOM on
emulating UNIMEM atomics to allow early prototyping, porting and tuning of runtime
systemsdr UNIMEM, as well as key advances in optimizing the performance and scalability
of runtime algorithms. The last part of this section presents the contribution of FHG on
porting and evaluating the GPI runtime system on UNIMEM.

3.3.1 Emulation of UNIMEM Atomics (UOM)

Porting OpenStream, runtime algorithms and -datactures to UNIMEM requires a
controlled development environment where it is possible to distinguish betwedevielw

bugs in the runtime system from bugs present in the prototype device drivewed] as the
capability to debug across multiple nodes. As this has not been possible on the prototype
boards, relying on the emulation layer was the most efficient approach. However, many low
level algorithms for synchronization and communication recgupgort for atomic operations

and remote memory allocation, as well as the capability to emulate multiple boards and to
dynamically deploy new boards. As mentioned in D3.1, these features were missing in the
original emulation environment, which would naltow porting OpenStream to UNIMEM

until the prototype is fully stable.
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UOM has therefore developed an emulation layer that provides the missing functionality, that
is fully compatible with the UNIMEM API and inteperable with the RDMA emulation
develgped by FORTH. This emulation layer is designed to facilitate debugging and to allow
an early evaluation of the impact of some key performance aspects, such as the latency of
atomic operations across nodes.

As the emulation environment is meant to be uzediesktop development machines, it is
essential to ensure that despite emulating multiple nodes within a shared address space, the
emulation environment does not allow shaneelmory communication to occur by mistake.

This is all the more important becaube runtime system and algorithms being ported were
originally designed to communicate through shared memory and this could otherwise have
been silently ignored and only found out during deployment on the prototype. To this effect,
each node is emulated b separate process and the Global Shared Address Space is emulated
using Linux shared memory segments for communication. Furthermore, to ensure that
communication only occurs through the UNIMEM API rather than native memory accesses,
the memory allocatoo nl 'y returns Ataintedo addresses: i
segmentation fault if a program tried to access the location directly. Such tainted addresses
can only be used within the emulator, which converts them back to valid addresses before
performing any memory operations.

An added benefit of this emulation framework is that it allows to tune some important
parameters in the early prototyping stages. In particular, most of the optimizations developed
at UOM are sensitive to the latency of mary accesses and atomic operations. For this
reason, the emulation of UNIMEM atomics allows to introduce artificial latencies and allows
early detection of significant algorithmic design issues when porting concurrent data
structures or synchronizatiorgakithms from shared memory to UNIMEM.

3.3.2 Locality-aware runtime support (UOM)

In this section, we discuss the performandécal algorithms and datstructures used by the
OpenStream runtime and which require special handling to ensure efficient openatien
UNIMEM architecture. We first describe the design of a stétie-art scalable load

balancing scheduler queue, then detail work on taking advantage of knowledge of machine
specific parameters (e.g., locality, latencies) to improve schedulingn@mbry allocation.

Hierarchical locality-aware Chase&Lev work-stealing

Concurrent deques (i.e., dowdaded queues) are a key data structure in simaesdory

parallel programming and play an essential role inveotke al i ng schedul er s.
algorithm is the current statef-the-art, of which we previously offered the first proven
implementation [4] that uses minimal atomic operations on relaxed memory consistency
systems. The key idea of the Chase and Lev algorithm is that a worker threadtenasgts

with its own deque from one end (bottonHigure § while the other worker threads can steal

from the other end (top iRigure § . The | ocal wor ker can Aput 0
schedul er gueueds bottom winhoonl yeQuembhaeg)
operations require atomics, when accessing the top of the deque. Under the hypothesis that
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stealing only represents a small fraction of the total accesses to the scheduler deque, this
delivers good performance and scalability.

Queue Qujtue Qu -ue Queue
Take
Persistent Persistent Persistent ces Persistent
worker worker worker worker
CPUO CPU 1 CPU 2 CPU N-1

Figure 8: Load-balancing scheduler with workstealing

However, this loadalancing scheduler queue comes with tradeoffs that have a substantial
impact when porting to UNIMEM. These issues are essentially linked to the original design,
which was targeting simple, uniform memory architectures offering sequential consistency.
Porting this datatructure to UNIMEM requires addressing two main issues: the inefficient
model for work discovery where every worker scans the scheduler quealestber workers

while looking for work (quadratic complexity and high potential for contention); and the
impact of nonuniform intranode vs. intenode memory access and atomics latencies, which
leads to an imbalanced access to work depending on igidaak.

The first adjustment is necessary for scalability as OpenStream programs can be written
without specifying worldistribution policies, which means that computation starts on one
worker and is spread out across the machine throughbladcing.In this initial phase,
random workstealing means that all workers attempt to find work by polling any other
worker in the system, which introduces a high amount of traffic on the interconnect.
Correcting this issue has required a significardesign ofthe original algorithm: (1) to adopt

a hierarchical datatructure Figure 9, separating intenode loaebalancing from intranode
operations; and (2) to switch from random wst&aling to a topologgware variant [6] that
further restricts traffic acresthe system, favoring local neighborhoods.
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\-
Node A // Steal |Node B \\
el -
Node-level queue Node-level queue
Put Take
Queue Quftue Qu cue Queue
Take
Persistent Persistent Persistent Persistent Persistent Persistent Persistent Persistent
worker worker worker worker worker worker worker worker
CPUO CPU 1 CPU 2 CPU 3 CPUO CPU1 CPU 2 CPU 3
Figure 9: Hierarchical work -stealing
As shown inFigure 9 i n addition to t h-eteam@defue,ra nadehr e a d
level deque is added which is where worker threads fromteenodes can steal work. As this
structureds bottom is shared locally by all/l

all nodes in the system, all operations must be synchronized with atomic operations. The
illustration in Figure 9correspondg¢o an imbalanced execution (e.g., when the program is
starting and work has not yet been distributed), but the assumption remains the same as in the
initial work-stealing algorithm, that the vast majority of tasks are not stolen and therefore
expensive gychronized steal operations should not result in excessive overhead. This
assumption has held for most Awivial programs in our experiments with OpenStream.

In addition to this hierarchical dastructure, the choice of woidtealing victim can also be
adjusted by defining neighborhoods of nodes, based on the topology of the machine or
dynamicallydefined, and attempting to steal from within a given neighborhood then
progressively widening the search area. This has the advantage of allowing to redalte ove
load-balancing traffic and reducing contention on shared-skatectures, as well as allowing

to map to potentially different levels of latency depending on the machine topology.

The second issue is due to the need to avoid using expensive atoraioogevhen polling
remote nodes for available work prior to initiating a steal. Our previous work has shown that
this is essential to maximize throughput in the lbathncing algorithm even on smatiale
systems. However, this twaiep approach can lmoblematic if the latencies of intende
communication and atomic operations differ significantly between nodes and fromaode&a
latencies. Indeed, between the moment a victim has been identified and the effective
acquisition of the work, workers théitave a faster access can systematically acquire the
available work before a sloaccess worker has a chance. This hampers the distribution of
work across the machine and can lead to very uneven distribution of work, reducing the
effective parallelism expited on the machine. This issue is addressed by introducing an
additional work distribution mechanism, called wquikshing, which we detail below.
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Locality-aware load-balancing scheduling and memory allocation

Dynamic taskparallel models are increagiy popular programming approaches for large
scale computing as they promise enhanced scalability, load balancing and locality. Yet these
promises are undermined by roniform memory access (NUMA), a common feature of any
largescale system. In [2], we @ shown that using NUMAware task and data placement, it

is possible to preserve a uniform abstraction of both computing and memory resources for
taskparallel programming models while achieving high data locality. This is achieved
through a compreheng\strategy for memory allocation and work placement, and which we
have implemented in OpenStream. The core of this strategy is composed of three techniques
that complement the worstealing loaebalancing algorithm presented above:

1.

Implicit privatizationof all data produced by tasks, which is the default behavior in
OpenStream, ensures that the runtime system has full control over memory
management. This is also one of the key properties used to port OpenStream, which
was initially a shareenemory programming model, on top of UNIMEM RDMA.

. Deferred allocationis a technique that delays the allocation of memory for writing the

outputs of a task until it starts executing. This is necessary because in the presence of
dynamic scheduling, a task can be stolenmmved at any point until it starts
executing. If its memory affinity (i.e. the location of the data it will access) is fixed too
early, this can lead to stdptimal runtime behavior. By delaying memory allocation

until execution, we guarantee that allalptoduced will be written locally.

Topologyaware workpushinginspects thenput dependences of a task to determine

on which node it is the most suitable to be executed by computing a weighted average
of the cost to transfer the data it requires for aken. This is illustrated ifrigure 10

where the worker on CPU-I has decided that a newly ready to execute task has best
affinity with CPU 0 and thereforpushesthe task instead of putting it in its own
gueue. This requires adding an additional receptjueue for worpushing on each
worker (and at nodk&vel once the hierarchical refinement described for vetekling

is also implemented).

—

QueueMPSC QueueMPSC QueueMPSC QueueMPSC
FIFO FIFO FIFO FIFO
Persistent Persistent Persistent ves Persistent
worker worker worker worker
CPU 0 CPU 1 CPU 2 CPU N-1

Figure 10: Locality -aware work-pushing
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While work-pushing and worstealing may appedo conflict in some cases, they are very
complementary. Worpushing can also include additional heuristics or user hints to
accelerate the initial distribution of work. Our data placement scheme guarantees that all
accesses to task output data target tbeal memory of the accessing core. The
complementary task placement heuristic improves the locality of task input data on a best
effort basis. These algorithms take advantage of-fttatastyle task parallelism, where the
privatization of task data enhaes scalability by eliminating false dependences and enabling
fine-grained dynamic control over data placement. The algorithms are fully automatic,
applicationindependent and performanpertable, automatically adapting to dynamic
changes.

Placement desions use information about inteersk data dependences readily available in the
runtime system and placement information from the operating system or UNIMEM driver.
Our experiments, so far with shaxeemory systems up to 192 cores and 24 nodes, show tha
we achieve on average 94% of local memory accesses and up to 5% higher performance. We
expect similar or better improvements in the case of larger systems because of a higher impact
of locality when the memory latency of accessing remote nodes increases.

We have additional ongoing investigations into adapting previous work on restricting the
reliance on atomic operations and mitigating their impact for software barrier synchronization
[3] and FIFO queue communication [5]. We expect that the key bepétit® optimizations
implemented for other forms of NUMA and for minimizing reliance on atomic operations will
translate into significant efficiency gains on the UNIMEM architecture as well.

3.3.3 GPI runtime system (FhG)

GPF2 is a PGASohased runtime environme for distributedparallel systems. GPI
outperforms other parallel runtimes in almost all scenarios in terms of scalability and
communication efficiency. To enable this kind of performance, all-BRting-Blocks
(Figure 12 need to be optimized amdghly tuned for the underlying transport hardware.

GPI Building Blocks for ExaNode
= || Segments Runtime Environment 2
Q
g .
2 | Global Atomics Groups g
g 3
O 1 Passive RDMA £
£ £
Q . Q
£ [ Collectives €
= g
il = 10 Queues

Figure 11: GPI Building -Blocks
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In collaboration with Forth we edesigned a first and simple API for UNIMEM. This API
served as a basis model for the implementation obraplex emulatiorsystem on top of
Infiniband, which was used to test the integration of GPI into the Umimem software
environment. Today GPI is the first runtime that supports the defined UNIMEM API. In a
next step different unit tests of the separatedrsablules will be implemented to improve the
robustness of the implementation.

Tests on the UNIMEM Prototype Hardware

Parallel to the implementation on the emulatsystem we started to test the UNIMEM API
on the multiboard Prototype Hardware. The nt test results are as follows:

- Multi-board prototype hardware is not stable and cannot yet be used faror&hl
tests

- Typical parallel startup mechanisms like mpi_run or gpi_run cannot be used

- Handstarted processes cannot communicate at all ustngfMEM API

- The documented startup procedure (remoteFork) seems to implement some kind of
process hierarchy/security which does not include other pratgssices and has no
functionality for environment variables and command line arguments as needed by
e.g. mpi_run (undocumented)

- Strong size limitations for memory segments and communication calls

To overcome the current UNIMEM API limitations, we started to port the &iPmodules to

a generic socket interface on top of UNIMEM. This workaround allowts @isrther improve

the individual GPISubmodules and to continue the developing process without time
consuming interruption and delays.
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GPI Runtime (Sub-Modules)

Segments

Global Atomics

Passive RDMA

— Collectives

Unimem-Dependend

— 10 Queues

Sockets over Unimem

Hardware

Figure 12: GPI-Submodules on top of UNIMEM-Sockets

Next steps

We have developed a small tasiite that can be used to test the UNIMEM API on the multi
board prototypes. This tepackage was introduced to Forth in a {sassion to show off the
current UNIMEM API problems. The package is also installed on a netsianie available

to the Prototypes and can be used by all other developers as a starting point for own
developments. Together with Forth we will work on the current issues to build up an
optimized UNIMEM API for runtimes like MPI and GPI.
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4 Tuning of platforms

4.1 High-speed low-latency inter-chip communication (FORTH)

The interchip communication between FPGA modules is supported bydmgéd serial links
based on SerDes transceiver hard blocks found in allgegiormance FPGAs; higand
FPGAs may contaigeveral tens of SerDes transceiver hard blocks. In some designs, SerDes
transceivers are preferred over LVDS links because they have highgingeansfer rates (an
order of magnitude) and thus require less pins for connections of the same bandveldth. Ea
SerDes transceiver hard block in our FPGA infrastructure (Xilinx UltraScale+*GTH
supports rates of up 12.5 Gbps per lane per direction (2 TX and 2 RX pins). Although,
these hard blocks have very high bandwidth, their latency depends on the atigiigur
settings and the hardware controller (IP block implemented in FPGA logic) that drives them.

The typical IP block offered by Xilinx is called Aurdrand offers an AX{Stream interface to

the user logic. The Aurora IP block protocol uses 64B/66B encoding and introduces ~3%
bandwidth overhead. The issue with Aurora IP is its Hegdncy for interchip
communication. According to the Aurora IP manud&le tlatency from usdpgic at the
transmitter to the usdogic at the receiver ranges from 46 user clock cycles (minimum) to 55
user clock cycles (maximum); we have confirmed such latencies with simulations and tests on
FPGA prototypes. For a 10.3125 GHpk with a 64bit datapath the user clock is 156.25
MHz (6.4 nanoseconds) and the amay latency ranges from 294 to 352 nanoseconds
Consequently, the Aurora IP block is not suitable for-latency interchip communication.

4.1.1 Low Latency SerDes Link IP (FORTH)

During the tuning efforts in task T5.2, FORTH has designed and implemented a streamlined
low-latency SerDes LinkP with a custom protocol to achieve link latencledow 100
nanosecondsThe IP block customizes the existing Xilinx UltraScale+HsFansceivers,
offers the same AXStream interface to usérgic, and uses a 64B/66B encoding scheme for
data transmission similar to typical protocols.

Data Encoding

One important issue with all mulgigabit transceivers and serial links is the emugpdf data.
The serial links are plesiochronous and the transmitters do not send their clock (via a
dedicated pin) with the data, as in soesgachronous systems, but rather encode the clock

fedgeso in the actual d altaadfromilt hO. The receidersa n s i t
perform clockandd at a recovery (CDR) and require fre
8B/ 10B fixed encoding which guarantees at | €
20%. Modern CDR circuits are more immune to infrequenfie d g e s 0, -tlarsitioa hi g h
density margins, and can operate with an fied

4 Xilinx Inc. UltrascaleArchitecture GTH Transceivers User Guide (UG576)
5 Xilinx Inc. PG0O74- Aurora 64B/66B v11.2 Product Guide
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Ethernet) take advantage of these improvements and use encodings like 64B/66B which have
only ~3% overhead.

Our IP block use a custom 64B/66B encoding scheme where the two extra bits (called
headetbits) provide framing and control information and guarantdea@ata st one fedge
66bi t s . To gener at e mor e fedgeso from t h
scrambler/descrambleplynomial defined by 10G Ethernet(x) = ¥° + x*° + 1] which has

very low area overhead. The encoding logic incurs only a single user clock cycle of latency at

the transmitter (to scramble) and a single user clock cycle at the receiver (to descfeonble).
10.3125 Gbps links the sum of scrambler and descrambler latency is 12.4 nanoseconds.

The encoding of headits is as follows:

1 Dat a (iBdicaes that the word is part of a frame/stream transmission.

1 DataEndof-F r a me {(irtlidabeq thdxst word of a frame/stream transmission.

T Cont r ol:indicatésithatOthe next @At word is useefined information. We
allow user logic to define and transmit custom control words ebit4in our
reference implementation, we have reserveuit from the 64bit control word to
indicate IDLE, i.e. no transmission. Moreover, we have defined other control words
for pausebased flowcontrol (XON/XOFF) and credibased flowcontrol.

1 Re s er v e dThi$ \&lGebiOrésé¢rved and considered an invaliddreamlue. This
value should not appear in a correct frame/stream and indicates transmission errors
and/or that the link is down.

Based on the above headit encodings our IP block easily constructs framed data
transmissions from the AX$tream user intéace signals at the sender, and reconstructs the
AXI-Stream user interface signals at the receiver. There is almoeft-one correspondence

of the fval i ¢teanasigdalsfolthe bcadBrsiAiXvial i d 0 d-bitiOves he
and fl aseaderbidl at the senddér and vieersa at the receiver; our logic that

handles this conversion has zero latency.

Moreover, our IP features an additional control port interface to allow thelaggerto

transmit and receive usdefined control words,.g. flow-control information. This control
portis64bi t wide with fAvalido and fAreadyo signal
precedence over the Axltream interface and may occur anytime. However, to ease fast
packet transmission (via the AsStream interface) and enable -tlhutough operation without

Ahi ccupso, our reference design enables (ac
packet/frame boundaries.

Low Latency GTH Transmit and Receive Paths

To achieve lowlatency in both the tresmitter path and the receiver path we have carefully
configured and optimized the internal paths in the GTH transceivers that are used by our
custom link controller (IP block in the FPGA logic). In order to decide for the optimal
configuration of the GTHtransceivers, we have studied the latency of each internal
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component using latency information by XilfaxThe latency values are typically measured in
unit intervals (UIs). The Ul is defined as the time needed to transmit one bit and depends on
the link-rate, e.g. for a 10 Gbps link the Ul is 100 picoseconds and for a 12.5 Gbps link the Ul
is 80 picoseconds.

OQur anal ysis of transmit pat h |l atenci es re
component, which is typically used in many GTH transceiver cordigns, incurs a latency

of 309340 Uls (~30i 33 nanoseconds for 10.3125 Gbps links). This block compensates for

the 64bit userdata to 6ébit link-data frequency difference. Supporting 10 Gbps user rate

with 64B/66B encoding (3.125% overhead) over0a3125 Gbps link requires a user clock
frequency of 156.25 MHz where the GTH internal transmitter frequency is 161.13 MHz.

Il n our design, we opted to use the ATX Sync
latency of 641 128 Uls (~6.2i 12.4 nanosemnds for 10.3125 Gbps links). The impact of

using this path is that the transmitter operates at 161.13MHznastipause transmission

every 32 words to compensate for the differerdgure 13 presents the internal path that is

used in our GTH transmitter configuration and shows in blue boxes the latency incurred by
each component. The minimum total transmit latency with our configuration is 271 Uls while

the maximum lancy is 335 Uls. For a 10.3125 Gbps link, the minimum and maximum
transmit path latency values are ~26.3 and ~32.5 nanoseconds respectively.

| 64 -128 Uls I

TX Async
79 Uls / m DA 96 Uls
Beacon TX Sync
G - LI T -
™ | TX e ear;lm d
TX | 0OB | Pre/ : - Pattern ' TXPIPE 1
<1 = Briver - and—{-Rost 4 BISQ L2 -@::-, 008 “i Genemorl ' Control 1
PCle | Emp I 1 :
: N |
! 1
1
- ] ! s8/108 . .
N i 1T= Encoder I kbt | | _ 66-bit
X H Phase : interface
Clock Id=— L Adjust =4
Dividers FIFO 128B/130B _J ™
Encoder
I 32 Uls
TX Phase
TX Phase Interpolator
Interpolator Controller
L T TX PMA ) L TX PCS
From Channel To RX Parallel Data From RX Parallel Data From RX Parallel Data
Clocking Architecture (Near-End PCS Loopback) (Far-End PMA Loopback) (Far-End PCS Loopback)
Figure 13: Customized transmit path in Xilinx GTH transceiver
Our analysis of receivgp at h | atenci es reveal s t hat t he

component, which is typically used in many GTH transceiver configurations, incurs a latency
of 348 Uls (~33.8 nanoseconds for 10.3125 Gbps links). This block compensates for the 64
bit userdata to66-bit link-data frequency difference. Supporting 10 Gbps user data rate with
64B/66B encoding (3.125% overhead) over a 10.3125 Gbps link requires a user clock
frequency of 156.25 MHz where the GTH transmitter frequency is 161.13 MHz.

6 Xilinx Inc. AR# 64309 UltraScale GTH Transceiver: TX and RX Latency Values
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Figure 14: Customized receiver path in Xilinx GTH transceiver

I n our design, we opted to use the ARX Sync
latency of 321 97 Uls (~3.1i 9.4 nanoseconds for 10.3125 Gbps links). The impact of using

this path is that the receiver operates with the recovered transmitteratldé4,.13MHz, and

every 32 words one invalid words appears to the interface in order to compensate for the
difference.Figure 14 presents the internal path that is usedur GTH receiver configuration

and shows in blue boxes the latency incurred by each component. The minimum total receive
latency path with our configuration is 237 Uls while the maximum latency is 302 Uls. For a
10.3125 Gbps link, the minimum and maxim receive path latency values are ~23 and ~29.2
nanoseconds respectively.

Clock Correction and Receive Interface

In serial link connections, the transmitter and the receiver have the same nominal clock
frequency, but their clock source is coming fronifedent crystal oscillators and have
inevitably small differences in frequency and jitter (typically 100 pgpparts per million)

which effectively means that clock phases drift. In such plesiochronous systems the sender
and receiver need to compensate $och frequency and phase differences. The typical
technique wused in such systems i <€o0t poe @teiradrod
sequences. These clock correction sequences are used by the receiver to avoid overflows and
underflows. The receive may di s ccaorrdr eactfi mlnddc ksequence to
transmitter has faster clock) or duplicate one sequence to avoid underflows (the transmitter
has slower clock). The periodicity of clock correction sequences depends on the maximum
allowed clock frequency difference and the linkte and often times limits the maximum

packet size. The current GTH transceiver supports clock correction only when 8B/10B
encoding is usedbanhtlewbeaoombendéreti ass i etnabl ed
least 230 Uls latency) thus, we follow a custom approach.

Our approach is to operate the baeid part of the receiver FPGA logic with the recovered
clock (transmitter 0s-dataltman lgynchaonodis HFO queeeuThe t h e
gueue at theeceiver is already there for fleeontrol and we exploit it to avoid overflows due

to clock differences. Moreover, the FIFO enables the receiver and the transmitlegicstr

operate with a common clock (A»8tream clock) as most designs do. The-tiaka are
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enqueued to the FIFO by the beaamkd FPGA logic with the recovered clock and dequeued
from the FIFO with the useslock (AXI-Stream clock) from the frorend FPGA logic.

Typical asynchronous FIFOs have long latencies that range from 3 to 7 glolds.c
However, our design exploits the fact that the design is plesiochronous and optimizes for this
case. We have developed a plesiochronous FIFO that uses a variant of th@dBven
Synchronizet. Our plesiochronous FIFO has a minimum latency of ~0.6kctycles and a
maximum latency of ~1.6 clock cycles while the average is ~1.1 clock cycles. For a 10.3125
Gbps link the average plesiochronous FIFO latency is ~6.8 nanoseconds while the maximum
latency is ~10 nanoseconds.

Total Latency

The total transntilatency of our IP block is the sum of the scrambler (encoding) latency and
the GTH transmit path latency. For a 10.3125 Gbps link, the total minimum transmit latency
is ~32.5 nanoseconds and the total maximum transmit latency is ~38.7 nanosecondal The to
receive latency of our IP block is the sum of the GTH receiver path latency, descrambler
(decoding) latency, and the plesiochronous FIFO latency. For a 10.3125 Gbps link, the total
minimum receive latency is ~39.2 nanoseconds and the total maximuiverétency is

~45.4 nanoseconds.

The totalintec hi p | atency from the-Straamini toenndmse u
user logic (AXkStream) is~72 nanoseconds at minimwand~84 nanoseconds at maximum
Compared to the Aurora IP block, our SesDLink IPyields four times lower latenayith

total oneway latency under 100 nanoseconaich makes it suitable for loVatency inter

chip communication.

4.2 Low-power techniques (VOSYS, FORTH)

The overhead introduced by the API remoting technique athdhlization in general directly
translates to a higher power consumption. This section will detail the directions that are being
explored to reduce the virtualization overhead and thus the power consumption.

Related to the API remoting, two differentngjronization methods are envisioned for the
backendbs thread involved in the handling o
spinlocks, ensures the best performance since expects the threads to constantly poll on a
shared memory shared betweae host thread and guesktregulated by the spinlock. This
solution, although ensuring the | owes- | at e
efficient. As an alternative solution, a Virtlilased mechanism has been implemented, relying

on a much moreefficient approach based on asynchronous notification delivery. The two

7 W. J. Dally and S. G. Tell, "The Even/Odd Synchronizer: A FastDagltal, Periodic
Synchronizer,” 2010 IEEE Symposium on Asynchronous Circuits and Systems, Grenoble,
2010, pp. 754.
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solutions are not mutually exclusive, and caregst in the platform to guarantee the best
compromise between power consumption and performance.

To further increment the efficienayf the API remoting solution, a direct attachment of an
hardware mailbox to the virtual machine can be considered. By configuring the host MMU is
such a way to access the device directly from the virtual machine, the virtualization layer can
be skipped ata negligible price of an additional MMU translation stage. The power
consumption resulting from this solution is the same as not having virtualization at all since
the device will be operated directly by the guest Linux driver.

Virtualization however doesot go only against power consumption of a system: it introduces
benefits like virtual machine snapshot creation and incremental checkpointing that have been
explored in the context of ExaNoDe. This features can have interesting applicability in the
context of efficiently manage the system resources. When a virtual machine does not need to
perform any computation, this can be suspended and, in case, a snapshot can be created. This
will allow to restore the virtual machine when needed, avoiding the pantléag of the

guest system.

4.3 HW sensors monitoring infrastructure (ETHZ, FORTH)

Figure 15: Scalable monitoring framework

Figure 15 shows the skeleton of the target monitoring framework which has been developed
by ETHZ. The framework can be adapted to inspect several physical parameters by
periodically reading availableessors and propagating them to the network thanks to a
lightweight communication protocol based on sockets andoflbidand communication.
Thanks to that the monitoring framework can be executed in multiple nodes and share the
monitored events to a centmdd entity which organizes the monitored values in topics and
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