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Executive Summary 
 

This deliverable describes the system-level integration of the initial software environment 

(firmware, OS services, runtime, hypervisor services, virtualization activities), described in 

D3.1, and the multi-board hardware prototype designed in D5.1. Throughout this integration 

process, both the software and hardware platform have been tuned in order to provide efficient 

use of resources. Such tuning involves the design and implementation of the Ultrascale+ 

coherence island, runtime optimizations for locality and latency, high-speed low-latency inter-

chip communication, low-power techniques, and design of scalable HW sensors monitoring 

infrastructure with minimal intrusiveness and overhead.  
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1 Introduction 
The ExaNoDe project is developing a unique HPC system architecture founded on the 

UNIMEM architecture, which is also the basis for the related projects EUROSERVER
1
 and 

ExaNeSt
2
. A system that implements UNIMEM consists of a number of computational nodes 

connected through a custom network. Each node typically contains multiple processing cores, 

which communicate amongst themselves using coherent shared memory as provided by the 

hardware. Distinct nodes communicate using UNIMEMôs global shared address space (GAS), 

which provides non-coherent loadïstore and RDMA access to any other remote node.  The 

UNIMEM hardware architecture is exposed to user space via the Global Shared Address 

Space (GSAS), user-space RDMA, mailbox and remote allocator APIs defined in D3.6. 

This deliverable describes the system-level integration of the initial software environment 

(firmware, OS services, runtime, hypervisor services, virtualization activities), described in 

D3.1, and the multi-board hardware prototype designed in D5.1. Throughout this integration 

process, both the software and hardware platform have been tuned in order to ensure efficient  

interactions between the different software and hardware components. 

The design and implementation of the Ultrascale+ coherence island solves the issue of high 

inefficiency of the Juno PCIe link by employing Xilinx Ultrascale+ FPGAs which were made 

available to the project towards the end of the first year. We further describe the SerDes link 

architecture for high-speed low-latency inter-chip communication, as well as low-power 

techniques to reduce virtualization overhead and power consumption, and the design of 

scalable HW sensors monitoring infrastructure with minimal intrusiveness and overhead. 

The GSAS environment API, an extension of the global address space communication 

mechanism enabled by the UNIMEM architecture, allows applications to allocate/de-allocate 

virtual shared address space, to perform atomic reads, writes and many other operations on the 

allocated space by using appropriate library calls. The user-space initiated DMA library, 

capable of transferring to/from any memory location throughout the whole global memory 

space, exposes the functionality of the DMA engines that UNIMEM provides to user space. 

Sockets over RDMA and a mailbox-style notification mechanism are also provided. 

GPI is an open-source communication library that implements the GASPI standard PGAS 

API.  It provides a portable and lightweight API that leverages remote completion and one-

sided RDMA-driven communication, both being efficiently supported by the UNIMEM 

architecture. As such, GPI is an appropriate communication library to benefit from and 

evaluate the UNIMEM architecture.  

                                                 

1 http://www.euroserver-project.eu/ 

2 http://www.exanest.eu/ 
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2 Prototype and Global Shared Address Space (FORTH) 
The UNIMEM architecture, introduced in the Euroserver project, aims to provide a scalable 

distributed system solution enabling direct remote memory accesses and shared memory. The 

UNIMEM architecture can be deployed in a system consisting of several "coherence islands", 

where a coherence island includes one or more processors, a cache coherent memory, various 

peripherals and an external port for remote accesses. All accesses inside the coherence island 

are cache coherent. In the ExaNoDe architecture, a Xilinx Ultrascale+ FPGA is one such 

coherence island and a collection of FPGAs form the ExaNoDe system which supports the 

UNIMEM architecture. Each FPGA supports a physical address mapping for accessing its 

local memory, its local peripherals and the external world (i.e. memories and peripherals of 

other FPGAs in the UNIMEM architecture). This "window" to the external world provides 

direct memory and I/O accesses (through standard load/store instructions) to other coherence 

islands and it is used to provide a global address space, as shown in Figure 1. The physical 

interface to the remote world can be anything (PCIe, AXI, Ethernet, etc.).  

 

 

Figure 1: Accesses in the external ñwindowò of the local address space are translated to global 

memory access. 

 

Within ExaNoDe we first extended the UNIMEM architecture of the Juno-based prototype, as 

described in D5.1. Low-latency communication between the coherence islands is very critical 

for the UNIMEM architecture. The coherence island in the UNIMEM architecture of the 

Juno-based prototype is a Juno board. A Xilinx KCU105 board, supporting a Xilinx 

Ultrascale FPGA, is connected to the PCIe slot of the Juno board in order to provide external 

connectivity. Since the latency of the PCIe link is very long (about 200 CPU clock cycles) the 

communication latency between the Juno-based coherence islands is so high that the 

UNIMEM architecture is inefficient. When ExaNoDe decided to use and extend the Juno-

based prototype there was no other option since it was the only system employing 64-bit 

ARMv8 processors which support an external window through the PCIe link.  

ExaNoDe resolved the latency issue of the Juno-based prototype by employing Xilinx 

Ultrascale+ FPGAs which were made available to the project about one year ago. This 

effectively replaced the Juno prototype architecture, which uses a discrete CPU and FPGA 

connected through a PCIe link, with an FPGA with integrated CPU cores. 
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Figure 2: Latency of Juno coherence island and Ultrascale+ coherence island. 

 

Thus ExaNoDe further ported the UNIMEM architecture onto the Trenz-based prototype. 

This is the second interim prototype that uses Xilinx Zynq UltraScale+ FPGAs and 

development boards marketed by Trenz Electronic GmbH, a company that provides 

development services for the electronics industry. Each Xilinx Ultrascale+ FPGA in this 

prototype is a UNIMEM coherence island. As shown in Figure 2 the latency to the external 

world is a few cycles and thus the communication latency between the coherence islands was 

highly improved compared to the Juno-based prototype. 

This prototype is meant to assist in the development of a number of key components of the 

ExaNoDe system which are included in this deliverable. The major building blocks of this 

prototype are the TE808 Multi-Processor SoC module that mounts on a TEBF0808 baseboard. 

The prototype is comprised of multiple instances of those two components in an appropriate 

configuration. This prototype is served as a development platform for a number of ExaNoDe 

partners, hence, although based at FORTHôs premises, it is also remotely accessible to those 

that need it. 

The UNIMEM architecture has been reproduced using Trenz hardware in a setup such as the 

one presented in Figure 3. In effect, each Coherence Island is implemented using a single pair 

of the TE0808 module and TEBF0808 baseboard (as well as the JTAG/UART adapters, 

although their role secondary). This can be easily performed since the UltraScale+ FPGA of 

TE0808 features 64-bit quad application processors along with significant reconfigurable 

resources. 

 

 

Figure 3: UNIMEM architecture where each coherence island is a Trenz kit. 
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The FPGA used on the Trenz-Node is the same as the one to be used in the final ExaNoDe 

prototype. The Trenz-based prototype will be actually a smaller version of the final prototype. 

It will connect several Xilinx Ultrascale+ FPGAs over high-speed links, in a similar way as 

the final ExaNoDe prototype. The only difference is that the final ExaNoDe prototype will be 

denser and it will support higher throughputs, more memory and it will demonstrate the use of 

system in package and interposer technology. Figure 4 shows the Trenz-based prototype at 

FORTH consisting of 8 Trenz kits. 

 

 

 

 

Figure 4: The Trenz-based prototype at FORTH (on the left) and the Trenz kit (on the right).  

Figure 5 shows a portion of the ñGlobal System Address Mapò of the physical space inside the 

Zynq Ultrascale+ FPGA (see Zynq Ultrascale+ Technical Reference Manual
3
). The 

Ultrascale+ Address Mapping provides regions of about 384 GB in total to the external world 

(M_AXI_HPM0_FPD and M_AXI_HMP1_FPD regions).  

 

 

                                                 

3 https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-

trm.pdf 
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Figure 5: Address mapping of Xilinx Ultrascale+ and mapping to the UNIMEM global address 

space. 

The external window of each Zynq Ultrascale+ FPGA of the Trenz-based prototype can be 

statically partitioned into memory domains, each one providing accesses to a Trenz-based 

coherence island as shown in Figure 5. Since each Trenz kit supports only 2GB of DRAM 

memory we statically map the external window to the global address space of the UNIMEM 

architecture allowing each Trenz board to access directly the whole UNIMEM space. In this 

way a Trenz-based coherence island can directly access any memory in the system without the 

need of any complicated translation mechanism in hardware.  

 

3 Software Environment Porting to UNIMEM 

 

The current implementation of the UNIMEM architecture exposes a set of programming 

frameworks as shown in Figure 6. These programming frameworks provide a powerful set of 

communication mechanisms to developers and to runtime systems, resulting in systems that 

are scalable for large numbers of nodes. These programming environments are the following: 

1. The Global Shared Address Space environment (abbr. GSAS environment) and the 

communication mechanisms that it provides. The GSAS environment defines an 

application interface (API) that is an extension of the global address space enabled by 

the UNIMEM architecture. GSAS gives the ability to processes that run across remote 

nodes to communicate in a way resembling a system that provides coherent shared 

memory communication. More specifically, the GSAS environment allows the 

applications to allocate/de-allocate virtual shared address space, to perform atomic 

reads, writes and many other operations on the allocated space by using appropriate 

library calls. 

2. User-space initiated DMA library. This library facilitates user-space initiations of 

DMA transfers. The DMA engine of the underlying system is capable of transferring 

to/from any memory location throughout the whole global memory space. The main 

part of this work aims to expose the functionality of the DMA engines that UNIMEM 

provides to user space.  

3. Sockets over RDMA. With Sockets over RDMA, a UNIMEM system can utilize low-

latency communication among local nodes, by means of fast RDMA transactions that 

bypass the kernel network stack.  

4. Furthermore, we give a description of mailbox-style notification mechanism with 

which a kernel- or user-space application can send and receive messages to and from 

remote nodes, thus enabling remote notification capability. 
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Figure 6 The UNIMEM programming interfaces, and their interactions. 

 

In the following section, we provide an overview of the UNIMEM hardware and software 

interfaces. Details have already been documented in Deliverable D3.6 (submitted in M13). In 

this deliverable we focus on hardware and software co-design aspects of the global shared  

address space that we have designed and implemented on the current-generation of UNIMEM 

prototypes.  

 

3.1 GSAS Environment (FORTH) 

 

In this section, we describe the current generation of global shared address space (abbr. GSAS 

environment) and the provided mechanisms for inter-process communication across different 

nodes (i.e., Trenz prototype nodes). 

Our global shared address space defines an application interface (i.e., API) that gives the 

ability to processes that run across remote nodes to communicate in a way resembling shared 

memory communication. More specifically, the GSAS environment allows the applications to 

allocate/de-allocate shared address space, to perform reads, writes and other atomic operations 

on the allocated space by calling the appropriate library calls. 

In the GSAS environment, all the read, write and atomic operations on the allocated address 

space are performed via special user-level library calls and not via conventional load and store 

instructions provided by the ARM processors. Since these calls are user-level, they do not 

involve operating system's kernel, thus they are a low-latency, fast communication 

mechanism. Although this communication mechanism is efficient, local memory accesses 

performed by the conventional ARM processor instructions are more efficient. Thus, the 

communication mechanisms provided by the GSAS environment should not be used in cases 

that do not involve communication among remote processes. In Figure 7, the hardware and 

the software stack that the GSAS environment is built on is presented. 
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Figure 7 Hardware and Software Stack for the GSAS Environment. 

 

3.1.1 Hardware Components (FORTH)  

We first discuss the hardware components that are the major communication components of 

the GSAS environment. A thread in order to be able to issue an atomic request on the GSAS 

environment, i.e., to send a packet describing the atomic operation to some remote node and 

thus to some remote atomic service, it should be possible to allocate one interface of the local 

virtualized mailbox and one interface of the local virtualized packetizer. By using the 

allocated interfaces of the local mailbox and the local packetizer, the thread has the ability to 

send network packets (using the packetizer interface) describing atomic requests and receive 

responses (using the mailbox interface) for the issued requests. More specifically, a thread is 

able to send packets of size of 256 bits to an interface of some remote or local mailbox by 

using the allocated packetizer interface. Moreover, the issuer of the atomic operation is able to 

receive the response send by the atomic service to the allocated interface of the local 

virtualized mailbox. 

The first interface of the virtualized mailbox starts at an address with suffix 0x0000 and it is 

only used by the atomic service of the node that the mailbox resides on. All other interfaces 

can be used by applications and they are allocated and de-allocated by the atomicity driver. 

Therefore, at most 63 threads are able to perform operations on the GSAS environment to 

each node. Each interface occupies 4096 bytes in address mapping, which is equal to 

operating systemôs (Linux) page size. Thus, it is possible for the operating system to safely 

map one interface of the virtual mailbox to the address space of exactly one thread. This kind 

of mapping allows threads to perform user-level accesses to the component. 

The virtualized packetizer is another important hardware component for the GSAS 

environment. The virtualized packetizer allows the user threads to atomically send packets of 

256 bits to any interface of any local/remote virtualized mailbox without having to make a 

memory mapping of the remote mailboxes to their address space. It is worth noting that by 
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avoiding to map remote mailbox interfaces directly to a threadôs virtual address space, we 

disallow a thread to read the contents placed there by other threads. This and the ability to 

send packets to remote mailbox interfaces only through the packetizer enables protection on 

the data stored in remote mailboxes. Moreover, each packetizer interface adds a unique prefix 

to the transmitted packet indicating the sender thread. The atomicity driver, which is a kernel 

entity, sets up this prefix and thus, it is a trusted entity. This gives the ability to the atomic 

service to identify in a secure way the sender of the packet and thus, to decide if the atomic 

operation that is requested is either valid or not. Therefore, the packetizer component is not 

only necessary for atomically transmitting, but also for providing the appropriate features to 

the atomic service for secure detection the source of the transmitted packets. 

Similarly to the virtualized mailbox, virtualized packetizer is equipped with 64 interfaces. The 

first interface of the virtualized packetizer starts at an address with suffix 0x0000 and 

similarly to the virtualized packetizer, it is only used by the atomic service. All other 

interfaces used by applications and they are allocated and de-allocated by using the 

functionality that the atomicity driver provides. Each interface occupies 4096 bytes in address 

mapping, which is equal to operating systemôs  (Linux) page size. The virtualized packetizer 

is also equipped with an extra interface that is accessible only by the atomicity driver. This is 

the 64
th
 interface and starts at an address with suffix 0x40000. The functionality of this 

interface provides the ability to the atomicity driver to set up a unique identification number 

for each running thread in the whole system. This identification number is added as a prefix to 

each transmitted packet giving the ability to the receiver thread (i.e., any remote atomic 

service) to securely identify the origin of the packet. 

 

3.1.2 Software Components (FORTH)  

We now describe the main software modules that are used on the GSAS environment. These 

software modules are the following (see Figure 7 for the whole hardware and software stack 

used by the GSAS environment). 

1. The atomicity driver. 

2. The atomic service.  

3. The software library that initiates atomic operations. 

We first describe the role of the atomicity driver in the GSAS environment. The atomicity 

driver is responsible for distributing the appropriate hardware resources to applicationsô 

threads. The role of the atomicity driver is to grant one out of the 63 interfaces of the 

virtualized mailbox and one out of the 63 interfaces of the virtualized packetizer to each 

system thread that wants to perform atomic operations on the GSAS environment. At the first 

time that a thread that wants to use the functionality of the GSAS environment, it allocates 

one interface of the virtualized mailbox and one interface of the virtualized packetizer. 

Afterwards, the thread by using the functionality of the library that initiates the atomic 

operations is able to use the allocated interface in order to perform atomic operations. The 

atomicity driver guarantees that each thread owns at most one atomic interface of the 

virtualized mailbox and at most one interface of the virtualized packetizer. Furthermore, by 

setting the appropriate memory mappings the atomicity driver guarantees that each thread is 

not able to access the hardware resources (i.e., the interfaces of the virtual mailbox or the 

interfaces of virtual packetizer) of threads that are spawned by different processes. As it was 
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already pointed out, the atomicity driver set ups at the initialization of the GSAS environment, 

one globally unique identification number on each of the interfaces of the packetizer. This 

gives the ability to the atomic service that runs on some node to safely distinguish which 

thread issues any atomic request. 

The main role of the atomic service is to serve the requests that are delivered on its local 

mailbox for the part of the address space that is responsible for. More specifically, the atomic 

service polls the interface 0 of the local mailbox until a packet that describes an atomic 

request arrives. Whenever such a packet arrives, the atomic service decodes the request, 

applies the described operation if it is valid (i.e., the target address and the operation code are 

valid, and the issuer thread has the appropriate access rights to perform the operation). 

Afterwards, the atomic service replies to the issuer by writing the response of the operation in 

the issuerôs mailbox.  

Apart from applying atomic operations on the address space of the GSAS environment, 

atomic service is responsible for servicing requests for memory allocation and for spawning 

new processes. It is noticeable that whenever no request is pending on a node for a long time, 

the atomic service of this node enters to sleep mode (i.e., gets the lowest priority among the 

other threads running on processing core 0) returning most of the processing resources to the 

other running processes. Whenever a new request is received, the atomic service exits from 

sleep mode. By following this kind of policy for sharing processing resources on core 0, in 

case that the address space of some node is not used, the atomic service of this node 

negligibly affects the performance of the other running applications. 

Lastly, we describe the role of the user-level library that is responsible for initiating atomic 

operations. Whenever, an application thread wants to perform an atomic operation (i.e., Read, 

Write, CAS, etc.), it calls the appropriate function of the user-level library in order to initiate 

the respective atomic operation. At first, this call checks if the system is appropriately 

initialized, i.e., one interface of the virtualized mailbox and one interface of the virtualized 

packetizer are allocated for the calling thread. In case that the environment is not 

appropriately initialized, the library initializes it through the atomicity driver. Afterwards, the 

atomic operation is encoded in a network packet and this packet is send to the atomic service 

on the appropriate remote node. 

 

3.2 OS & Virtualization (VOSYS, FORTH) 

 

In the Linux ecosystem, there are several open source and proprietary solutions to achieve 

virtualization. Among these, KVM has been chosen as virtualization-enabling solution in the 

context of ExaNoDe. KVM for ARM relies on the ARM virtualization extension which is an 

hardware IP that implements all the hardware-related support required by virtualization. Such 

hardware features are accesses by the host OS via a Linux kernel driver (KVM). 

 

KVM for ARMv8 (architecture of the target platforms) is part of the upstream (the official) 

Linux version and is maintained by the community. However, it was not enabled by default in 

the target boards configuration. In this context, VOSYS tested KVM support on the Trenz 

board, which required an ad-hoc kernel configuration for enabling the KVM module. 
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The use of virtualization as key component to improve reliability and manageability of the 

system makes more challenging the use of libraries that need to interface to physical 

resources. Among other things, virtualization introduces an additional layer that isolates the 

execution of the guest CPUs from the external devices, making the direct access to such 

devices not possible. Several solutions are available to tackle this problem, however, all of 

these add additional overhead that has to be quantified and kept to a minimum. As described 

in D3.4, an API remoting technology is being developed in order to enable the guest systemsô 

processes to use the UNIMEM API, filling the gap introduced by the virtualization layer. 

 

One of the key benefit related to the API remoting technique is about re-usability of the code 

already written: applications relying on UNIMEM do not require any adaptation to be run 

inside the virtual machine. From the functional perspective, this technique does not introduces 

any limitation and can be transparently integrated in the rest of the system. Being exclusively 

a software solution, the remoting technology can be easily integrated in the ExaNoDe 

prototype as it will affect mainly the virtualization layer being used (QEMU and KVM).  The 

remoting technology will certainly introduce some overhead since some copy of data and 

processing is required by the transport layer (further details in D3.4). In Section 3.2 this 

overhead will be analysed and some direction to mitigate the platformôs power consumption 

will be detailed. 

 

3.3 Runtime Systems 

 

A key aspect in providing a software environment on top of UNIMEM is to port and tune the 

runtime systems of the ExaNoDe programming models, taking into account the specificities 

of this architecture to optimize performance-critical aspects such as communication, 

synchronization and scheduling. This section first details the contributions of UOM on 

emulating UNIMEM atomics to allow early prototyping, porting and tuning of runtime 

systems for UNIMEM, as well as key advances in optimizing the performance and scalability 

of runtime algorithms. The last part of this section presents the contribution of FHG on 

porting and evaluating the GPI runtime system on UNIMEM. 

 

3.3.1 Emulation of UNIMEM Atomics (UOM) 

Porting OpenStream, runtime algorithms and data-structures to UNIMEM requires a 

controlled development environment where it is possible to distinguish between low-level 

bugs in the runtime system from bugs present in the prototype device drivers, as well as the  

capability to debug across multiple nodes. As this has not been possible on the prototype 

boards, relying on the emulation layer was the most efficient approach. However, many low-

level algorithms for synchronization and communication require support for atomic operations 

and remote memory allocation, as well as the capability to emulate multiple boards and to 

dynamically deploy new boards. As mentioned in D3.1, these features were missing in the 

original emulation environment, which would not allow porting OpenStream to UNIMEM 

until the prototype is fully stable.  
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UOM has therefore developed an emulation layer that provides the missing functionality, that 

is fully compatible with the UNIMEM API and inter-operable with the RDMA emulation 

developed by FORTH. This emulation layer is designed to facilitate debugging and to allow 

an early evaluation of the impact of some key performance aspects, such as the latency of 

atomic operations across nodes. 

 

As the emulation environment is meant to be used on desktop development machines, it is 

essential to ensure that despite emulating multiple nodes within a shared address space, the 

emulation environment does not allow shared-memory communication to occur by mistake. 

This is all the more important because the runtime system and algorithms being ported were 

originally designed to communicate through shared memory and this could otherwise have 

been silently ignored and only found out during deployment on the prototype. To this effect, 

each node is emulated by a separate process and the Global Shared Address Space is emulated 

using Linux shared memory segments for communication. Furthermore, to ensure that 

communication only occurs through the UNIMEM API rather than native memory accesses, 

the memory allocator only returns ñtaintedò addresses: invalid addresses which would give a 

segmentation fault if a program tried to access the location directly. Such tainted addresses 

can only be used within the emulator, which converts them back to valid addresses before 

performing any memory operations. 

 

An added benefit of this emulation framework is that it allows to tune some important 

parameters in the early prototyping stages. In particular, most of the optimizations developed 

at UOM are sensitive to the latency of memory accesses and atomic operations. For this 

reason, the emulation of UNIMEM atomics allows to introduce artificial latencies and allows 

early detection of significant algorithmic design issues when porting concurrent data-

structures or synchronization algorithms from shared memory to UNIMEM. 

 

3.3.2 Locality-aware runtime support (UOM) 

In this section, we discuss the performance-critical algorithms and data-structures used by the 

OpenStream runtime and which require special handling to ensure efficient operation on the 

UNIMEM architecture. We first describe the design of a state-of-the-art scalable load-

balancing scheduler queue, then detail work on taking advantage of knowledge of machine-

specific parameters (e.g., locality, latencies) to improve scheduling and memory allocation. 

 

Hierarchical locality-aware Chase&Lev work-stealing 

Concurrent deques (i.e., double-ended queues) are a key data structure in shared-memory 

parallel programming and play an essential role in work-stealing schedulers. Chase and Levôs 

algorithm is the current state-of-the-art, of which we previously offered the first proven 

implementation [4] that uses minimal atomic operations on relaxed memory consistency 

systems. The key idea of the Chase and Lev algorithm is that a worker thread only interacts 

with its own deque from one end (bottom in Figure 8) while the other worker threads can steal 

from the other end (top in Figure 8). The local worker can ñputò and ñtakeò tasks from the 

scheduler queueôs bottom without requiring any atomic operation, only (remote) ñstealò 

operations require atomics, when accessing the top of the deque. Under the hypothesis that 
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stealing only represents a small fraction of the total accesses to the scheduler deque, this 

delivers good performance and scalability. 

 

 

Figure 8: Load-balancing scheduler with work-stealing 

However, this load-balancing scheduler queue comes with tradeoffs that have a substantial 

impact when porting to UNIMEM. These issues are essentially linked to the original design, 

which was targeting simple, uniform memory architectures offering sequential consistency.  

Porting this data-structure to UNIMEM requires addressing two main issues: the inefficient 

model for work discovery where every worker scans the scheduler queues of all other workers 

while looking for work (quadratic complexity and high potential for contention); and the 

impact of non-uniform intra-node vs. inter-node memory access and atomics latencies, which 

leads to an imbalanced access to work depending on node distance. 

 

The first adjustment is necessary for scalability as OpenStream programs can be written 

without specifying work-distribution policies, which means that computation starts on one 

worker and is spread out across the machine through load-balancing. In this initial phase, 

random work-stealing means that all workers attempt to find work by polling any other 

worker in the system, which introduces a high amount of traffic on the interconnect. 

Correcting this issue has required a significant re-design of the original algorithm: (1) to adopt 

a hierarchical data-structure (Figure 9), separating inter-node load-balancing from intra-node 

operations; and (2) to switch from random work-stealing to a topology-aware variant [6] that 

further restricts traffic across the system, favoring local neighborhoods. 
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Figure 9: Hierarchical work -stealing 

As shown in Figure 9, in addition to the worker threadsô local work-stealing deque, a node-

level deque is added which is where worker threads from remote nodes can steal work. As this 

structureôs bottom is shared locally by all worker threads on the node and its top is shared by 

all nodes in the system, all operations must be synchronized with atomic operations. The 

illustration in Figure 9 corresponds to an imbalanced execution (e.g., when the program is 

starting and work has not yet been distributed), but the assumption remains the same as in the 

initial work-stealing algorithm, that the vast majority of tasks are not stolen and therefore 

expensive synchronized steal operations should not result in excessive overhead. This 

assumption has held for most non-trivial programs in our experiments with OpenStream. 

In addition to this hierarchical data-structure, the choice of work-stealing victim can also be 

adjusted by defining neighborhoods of nodes, based on the topology of the machine or 

dynamically-defined, and attempting to steal from within a given neighborhood then 

progressively widening the search area. This has the advantage of allowing to reduce overall 

load-balancing traffic and reducing contention on shared data-structures, as well as allowing 

to map to potentially different levels of latency depending on the machine topology. 

 

The second issue is due to the need to avoid using expensive atomic operations when polling 

remote nodes for available work prior to initiating a steal. Our previous work has shown that 

this is essential to maximize throughput in the load-balancing algorithm even on small-scale 

systems. However, this two-step approach can be problematic if the latencies of inter-node 

communication and atomic operations differ significantly between nodes and from intra-node 

latencies. Indeed, between the moment a victim has been identified and the effective 

acquisition of the work, workers that have a faster access can systematically acquire the 

available work before a slow-access worker has a chance. This hampers the distribution of 

work across the machine and can lead to very uneven distribution of work, reducing the 

effective parallelism exploited on the machine. This issue is addressed by introducing an 

additional work distribution mechanism, called work-pushing, which we detail below. 
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Locality-aware load-balancing scheduling and memory allocation 

Dynamic task-parallel models are increasingly popular programming approaches for large-

scale computing as they promise enhanced scalability, load balancing and locality. Yet these 

promises are undermined by non-uniform memory access (NUMA), a common feature of any 

large-scale system. In [2], we have shown that using NUMA-aware task and data placement, it 

is possible to preserve a uniform abstraction of both computing and memory resources for 

task-parallel programming models while achieving high data locality. This is achieved 

through a comprehensive strategy for memory allocation and work placement, and which we 

have implemented in OpenStream. The core of this strategy is composed of three techniques 

that complement the work-stealing load-balancing algorithm presented above: 

1. Implicit privatization of all data produced by tasks, which is the default behavior in 

OpenStream, ensures that the runtime system has full control over memory 

management. This is also one of the key properties used to port OpenStream, which 

was initially a shared-memory programming model, on top of UNIMEM RDMA. 

2. Deferred allocation is a technique that delays the allocation of memory for writing the 

outputs of a task until it starts executing. This is necessary because in the presence of 

dynamic scheduling, a task can be stolen or moved at any point until it starts 

executing. If its memory affinity (i.e. the location of the data it will access) is fixed too 

early, this can lead to sub-optimal runtime behavior. By delaying memory allocation 

until execution, we guarantee that all data produced will be written locally. 

3. Topology-aware work-pushing inspects the input dependences of a task to determine 

on which node it is the most suitable to be executed by computing a weighted average 

of the cost to transfer the data it requires for execution. This is illustrated in Figure 10 

where the worker on CPU N-1 has decided that a newly ready to execute task has best 

affinity with CPU 0 and therefore pushes the task instead of putting it in its own 

queue. This requires adding an additional reception queue for work-pushing on each 

worker (and at node-level once the hierarchical refinement described for work-stealing 

is also implemented). 

 

 

Figure 10: Locality -aware work-pushing 
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While work-pushing and work-stealing may appear to conflict in some cases, they are very 

complementary. Work-pushing can also include additional heuristics or user hints to 

accelerate the initial distribution of work. Our data placement scheme guarantees that all 

accesses to task output data target the local memory of the accessing core. The 

complementary task placement heuristic improves the locality of task input data on a best 

effort basis. These algorithms take advantage of data-flow style task parallelism, where the 

privatization of task data enhances scalability by eliminating false dependences and enabling 

fine-grained dynamic control over data placement. The algorithms are fully automatic, 

application-independent and performance-portable, automatically adapting to dynamic 

changes.  

Placement decisions use information about inter-task data dependences readily available in the 

run-time system and placement information from the operating system or UNIMEM driver. 

Our experiments, so far with shared-memory systems up to 192 cores and 24 nodes, show that 

we achieve on average 94% of local memory accesses and up to 5× higher performance. We 

expect similar or better improvements in the case of larger systems because of a higher impact 

of locality when the memory latency of accessing remote nodes increases. 

 

We have additional ongoing investigations into adapting previous work on restricting the 

reliance on atomic operations and mitigating their impact for software barrier synchronization 

[3] and FIFO queue communication [5]. We expect that the key benefits of the optimizations 

implemented for other forms of NUMA and for minimizing reliance on atomic operations will 

translate into significant efficiency gains on the UNIMEM architecture as well. 

 

3.3.3 GPI runtime system (FhG) 

GPI-2 is a PGAS-based runtime environment for distributed-parallel systems. GPI 

outperforms other parallel runtimes in almost all scenarios in terms of scalability and 

communication efficiency. To enable this kind of performance, all GPI-Building-Blocks 

(Figure 11) need to be optimized and highly tuned for the underlying transport hardware. 

 

 

Figure 11: GPI Building -Blocks 
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In collaboration with Forth we co-designed a first and simple API for UNIMEM. This API 

served as a basis model for the implementation of a complex emulation-system on top of 

Infiniband, which was used to test the integration of GPI into the Umimem software 

environment. Today GPI is the first runtime that supports the defined UNIMEM API. In a 

next step different unit tests of the separated sub-modules will be implemented to improve the 

robustness of the implementation. 

   

Tests on the UNIMEM Prototype Hardware 

 

Parallel to the implementation on the emulation-system we started to test the UNIMEM API 

on the multi-board Prototype Hardware. The current test results are as follows: 

 

- Multi -board prototype hardware is not stable and cannot yet be used for real-world 

tests 

- Typical parallel startup mechanisms like mpi_run or gpi_run cannot be used 

- Hand-started processes cannot communicate at all using the UNIMEM API 

- The documented startup procedure (remoteFork) seems to implement some kind of 

process hierarchy/security which does not include other process-instances and has no 

functionality for environment variables and command line arguments as needed by 

e.g. mpi_run (undocumented) 

- Strong size limitations for memory segments and communication calls 

 

To overcome the current UNIMEM API limitations, we started to port the GPI-Submodules to 

a generic socket interface on top of UNIMEM. This workaround allows us to further improve 

the individual GPI-Submodules and to continue the developing process without time-

consuming interruption and delays. 
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Figure 12: GPI-Submodules on top of UNIMEM-Sockets 

 

 

Next steps 

 

We have developed a small test-suite that can be used to test the UNIMEM API on the multi-

board prototypes. This test-package was introduced to Forth in a live-session to show off the 

current UNIMEM API problems. The package is also installed on a network-share available 

to the Prototypes and can be used by all other developers as a starting point for own 

developments. Together with Forth we will work on the current issues to build up an 

optimized UNIMEM API for runtimes like MPI and GPI.  
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4 Tuning of platforms 

4.1 High-speed low-latency inter-chip communication (FORTH) 

 

The inter-chip communication between FPGA modules is supported by high-speed serial links 

based on SerDes transceiver hard blocks found in all high-performance FPGAs; high-end 

FPGAs may contain several tens of SerDes transceiver hard blocks. In some designs, SerDes 

transceivers are preferred over LVDS links because they have higher per-pin transfer rates (an 

order of magnitude) and thus require less pins for connections of the same bandwidth. Each 

SerDes transceiver hard block in our FPGA infrastructure (Xilinx UltraScale+ GTH
4
) 

supports rates of up-to 12.5 Gbps per lane per direction (2 TX and 2 RX pins). Although, 

these hard blocks have very high bandwidth, their latency depends on the configuration 

settings and the hardware controller (IP block implemented in FPGA logic) that drives them. 

 

The typical IP block offered by Xilinx is called Aurora
5
 and offers an AXI-Stream interface to 

the user logic. The Aurora IP block protocol uses 64B/66B encoding and introduces ~3% 

bandwidth overhead. The issue with Aurora IP is its high-latency for inter-chip 

communication. According to the Aurora IP manual, the latency from user-logic at the 

transmitter to the user-logic at the receiver ranges from 46 user clock cycles (minimum) to 55 

user clock cycles (maximum); we have confirmed such latencies with simulations and tests on 

FPGA prototypes. For a 10.3125 Gbps link with a 64-bit datapath the user clock is 156.25 

MHz (6.4 nanoseconds) and the one-way latency ranges from 294 to 352 nanoseconds. 

Consequently, the Aurora IP block is not suitable for low-latency inter-chip communication. 

 

4.1.1 Low Latency SerDes Link IP (FORTH) 

  

During the tuning efforts in task T5.2, FORTH has designed and implemented a streamlined 

low-latency SerDes Link IP with a custom protocol to achieve link latencies below 100 

nanoseconds. The IP block customizes the existing Xilinx UltraScale+ GTH transceivers, 

offers the same AXI-Stream interface to user-logic, and uses a 64B/66B encoding scheme for 

data transmission similar to typical protocols. 

 

Data Encoding 

 

One important issue with all multi-gigabit transceivers and serial links is the encoding of data. 

The serial links are plesiochronous and the transmitters do not send their clock (via a 

dedicated pin) with the data, as in source-synchronous systems, but rather encode the clock 

ñedgesò in the actual data with bit transitions from 0 ­ 1 and from 1 ­ 0. The receivers 

perform clock-and-data recovery (CDR) and require frequent ñedgesò. Some systems use 

8B/10B fixed encoding which guarantees at least on ñedgeò every ~5 bits but the overhead is 

20%. Modern CDR circuits are more immune to infrequent ñedgesò, have higher bit-transition 

density margins, and can operate with an ñedgeò every ~100 bits. Several protocols (e.g. 10G 

                                                 

4 Xilinx Inc. Ultrascale Architecture GTH Transceivers User Guide (UG576) 

5 Xilinx Inc. PG074 - Aurora 64B/66B v11.2 Product Guide 
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Ethernet) take advantage of these improvements and use encodings like 64B/66B which have 

only ~3% overhead. 

 

Our IP block uses a custom 64B/66B encoding scheme where the two extra bits (called 

header-bits) provide framing and control information and guarantee at-least one ñedgeò every 

66-bits. To generate more ñedgesò from the transmitted data, we use the 

scrambler/descrambler polynomial defined by 10G Ethernet: [G(x) = x
58

 + x
39

 + 1] which has 

very low area overhead. The encoding logic incurs only a single user clock cycle of latency at 

the transmitter (to scramble) and a single user clock cycle at the receiver (to descramble). For 

10.3125 Gbps links the sum of scrambler and descrambler latency is 12.4 nanoseconds. 

 

The encoding of header-bits is as follows:  

¶ Data (2ôb01): indicates that the word is part of a frame/stream transmission. 

¶ Data End-of-Frame (2ôb11): indicates the last word of a frame/stream transmission. 

¶ Control (2ôb10): indicates that the next 64-bit word is user-defined information. We 

allow user logic to define and transmit custom control words of 64-bit. In our 

reference implementation, we have reserved 1-bit from the 64-bit control word to 

indicate IDLE, i.e. no transmission. Moreover, we have defined other control words 

for pause-based flow-control (XON/XOFF) and credit-based flow-control. 

¶ Reserved (2ôb00): This value is reserved and considered an invalid header value. This 

value should not appear in a correct frame/stream and indicates transmission errors 

and/or that the link is down. 

 

Based on the above header-bit encodings our IP block easily constructs framed data 

transmissions from the AXI-Stream user interface signals at the sender, and reconstructs the 

AXI -Stream user interface signals at the receiver. There is almost one-to-one correspondence 

of the ñvalidò and ñlastò AXI-Stream signals to the header-bits ï ñvalidò drives header-bit 0 

and ñlastò drives header-bit 1 at the sender and vice-versa at the receiver; our logic that 

handles this conversion has zero latency. 

 

Moreover, our IP features an additional control port interface to allow the user-logic to 

transmit and receive user-defined control words, e.g. flow-control information. This control 

port is 64-bit wide with ñvalidò and ñreadyò signals. The transmission of control words takes 

precedence over the AXI-stream interface and may occur anytime. However, to ease fast-

packet transmission (via the AXI-Stream interface) and enable cut-through operation without 

ñhiccupsò, our reference design enables (acknowledges) control word transmission only on 

packet/frame boundaries. 

 

Low Latency GTH Transmit and Receive Paths 

 

To achieve low-latency in both the transmitter path and the receiver path we have carefully 

configured and optimized the internal paths in the GTH transceivers that are used by our 

custom link controller (IP block in the FPGA logic). In order to decide for the optimal 

configuration of the GTH transceivers, we have studied the latency of each internal 
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component using latency information by Xilinx
6
. The latency values are typically measured in 

unit intervals (UIs). The UI is defined as the time needed to transmit one bit and depends on 

the link-rate, e.g. for a 10 Gbps link the UI is 100 picoseconds and for a 12.5 Gbps link the UI 

is 80 picoseconds.  

 

Our analysis of transmit path latencies reveals that the ñTX Asynchronous Gearboxò 

component, which is typically used in many GTH transceiver configurations, incurs a latency 

of 309-340 UIs (~30 ï 33 nanoseconds for 10.3125 Gbps links). This block compensates for 

the 64-bit user-data to 66-bit link-data frequency difference. Supporting 10 Gbps user rate 

with 64B/66B encoding (3.125% overhead) over a 10.3125 Gbps link requires a user clock-

frequency of 156.25 MHz where the GTH internal transmitter frequency is 161.13 MHz.  

 

In our design, we opted to use the ñTX Synchronous Gearboxò component that has a lower 

latency of 64 ï 128 UIs (~6.2 ï 12.4 nanoseconds for 10.3125 Gbps links). The impact of 

using this path is that the transmitter operates at 161.13MHz and must pause transmission 

every 32 words to compensate for the difference. Figure 13 presents the internal path that is 

used in our GTH transmitter configuration and shows in blue boxes the latency incurred by 

each component. The minimum total transmit latency with our configuration is 271 UIs while 

the maximum latency is 335 UIs. For a 10.3125 Gbps link, the minimum and maximum 

transmit path latency values are ~26.3 and ~32.5 nanoseconds respectively. 

 

 

Figure 13: Customized transmit path in Xilinx GTH transceiver 

 

Our analysis of receive path latencies reveals that the ñRX Asynchronous Gearboxò 

component, which is typically used in many GTH transceiver configurations, incurs a latency 

of 348 UIs (~33.8 nanoseconds for 10.3125 Gbps links). This block compensates for the 64-

bit user-data to 66-bit link-data frequency difference. Supporting 10 Gbps user data rate with 

64B/66B encoding (3.125% overhead) over a 10.3125 Gbps link requires a user clock-

frequency of 156.25 MHz where the GTH transmitter frequency is 161.13 MHz. 

 

                                                 

6 Xilinx Inc. AR# 64309 UltraScale GTH Transceiver: TX and RX Latency Values 
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Figure 14: Customized receiver path in Xilinx GTH transceiver 

 

In our design, we opted to use the ñRX Synchronous Gearboxò component that has a lower 

latency of 32 ï 97 UIs (~3.1 ï 9.4 nanoseconds for 10.3125 Gbps links). The impact of using 

this path is that the receiver operates with the recovered transmitter clock, at 161.13MHz, and 

every 32 words one invalid words appears to the interface in order to compensate for the 

difference. Figure 14 presents the internal path that is used in our GTH receiver configuration 

and shows in blue boxes the latency incurred by each component. The minimum total receive 

latency path with our configuration is 237 UIs while the maximum latency is 302 UIs. For a 

10.3125 Gbps link, the minimum and maximum receive path latency values are ~23 and ~29.2 

nanoseconds respectively. 

 

Clock Correction and Receive Interface 

 

In serial link connections, the transmitter and the receiver have the same nominal clock 

frequency, but their clock source is coming from different crystal oscillators and have 

inevitably small differences in frequency and jitter (typically 100 ppm ï parts per million) 

which effectively means that clock phases drift. In such plesiochronous systems the sender 

and receiver need to compensate for such frequency and phase differences. The typical 

technique used in such systems is to periodically transmit in the link ñclock-correctionò 

sequences. These clock correction sequences are used by the receiver to avoid overflows and 

underflows. The receiver may discard a ñclock-correctionò sequence to avoid overflow (the 

transmitter has faster clock) or duplicate one sequence to avoid underflows (the transmitter 

has slower clock). The periodicity of clock correction sequences depends on the maximum 

allowed clock frequency difference and the link-rate and often times limits the maximum 

packet size. The current GTH transceiver supports clock correction only when 8B/10B 

encoding is used and when the ñelastic-bufferò component is enabled (the elastic buffer has at 

least 230 UIs latency) thus, we follow a custom approach. 

 

Our approach is to operate the back-end part of the receiver FPGA logic with the recovered 

clock (transmitterôs clock) and enqueue the link-data to an asynchronous FIFO queue. The 

queue at the receiver is already there for flow-control and we exploit it to avoid overflows due 

to clock differences. Moreover, the FIFO enables the receiver and the transmitter user-logic to 

operate with a common clock (AXI-Stream clock) as most designs do. The link-data are 
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enqueued to the FIFO by the back-end FPGA logic with the recovered clock and dequeued 

from the FIFO with the user-clock (AXI-Stream clock) from the front-end FPGA logic. 

 

Typical asynchronous FIFOs have long latencies that range from 3 to 7 clock cycles. 

However, our design exploits the fact that the design is plesiochronous and optimizes for this 

case. We have developed a plesiochronous FIFO that uses a variant of the Even-Odd 

Synchronizer
7
. Our plesiochronous FIFO has a minimum latency of ~0.6 clock cycles and a 

maximum latency of ~1.6 clock cycles while the average is ~1.1 clock cycles. For a 10.3125 

Gbps link the average plesiochronous FIFO latency is ~6.8 nanoseconds while the maximum 

latency is ~10 nanoseconds. 

 

Total Latency 

 

The total transmit latency of our IP block is the sum of the scrambler (encoding) latency and 

the GTH transmit path latency. For a 10.3125 Gbps link, the total minimum transmit latency 

is ~32.5 nanoseconds and the total maximum transmit latency is ~38.7 nanoseconds. The total 

receive latency of our IP block is the sum of the GTH receiver path latency, descrambler 

(decoding) latency, and the plesiochronous FIFO latency. For a 10.3125 Gbps link, the total 

minimum receive latency is ~39.2 nanoseconds and the total maximum receive latency is 

~45.4 nanoseconds. 

 

The total inter-chip latency from the transmitterôs user logic (AXI-Stream) to the receiverôs 

user logic (AXI-Stream) is ~72 nanoseconds at minimum and ~84 nanoseconds at maximum. 

Compared to the Aurora IP block, our SerDes Link IP yields four times lower latency with 

total one-way latency under 100 nanoseconds, which makes it suitable for low-latency inter-

chip communication. 

 

4.2 Low-power techniques (VOSYS, FORTH) 

 

The overhead introduced by the API remoting technique and virtualization in general directly 

translates to a higher power consumption. This section will detail the directions that are being 

explored to reduce the virtualization overhead and thus the power consumption. 

 

Related to the API remoting, two different synchronization methods are envisioned for the 

backendôs thread involved in the handling of the guestsô API calls. The first one, based on 

spinlocks, ensures the best performance since expects the threads to constantly poll on a 

shared memory ï shared between host thread and guest ï regulated by the spinlock. This 

solution, although ensuring the lowest latency to serve a guestôs API call, is not power-

efficient. As an alternative solution, a Virtio-based mechanism has been implemented, relying 

on a much more efficient approach based on asynchronous notification delivery. The two 

                                                 

7 W. J. Dally and S. G. Tell, "The Even/Odd Synchronizer: A Fast, All-Digital, Periodic 

Synchronizer," 2010 IEEE Symposium on Asynchronous Circuits and Systems, Grenoble, 

2010, pp. 75-84. 
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solutions are not mutually exclusive, and can co-exist in the platform to guarantee the best 

compromise between power consumption and performance. 

 

To further increment the efficiency of the API remoting solution, a direct attachment of an 

hardware mailbox to the virtual machine can be considered. By configuring the host MMU is 

such a way to access the device directly from the virtual machine, the virtualization layer can 

be skipped at a negligible price of an additional MMU translation stage. The power 

consumption resulting from this solution is the same as not having virtualization at all since 

the device will be operated directly by the guest Linux driver. 

 

Virtualization however does not go only against power consumption of a system: it introduces 

benefits like virtual machine snapshot creation and incremental checkpointing that have been 

explored in the context of ExaNoDe. This features can have interesting applicability in the 

context of efficiently manage the system resources. When a virtual machine does not need to 

perform any computation, this can be suspended and, in case, a snapshot can be created. This 

will allow to restore the virtual machine when needed, avoiding the pointless idling of the 

guest system. 

 

4.3 HW sensors monitoring infrastructure (ETHZ, FORTH) 

 

 

Figure 15: Scalable monitoring framework 

Figure 15 shows the skeleton of the target monitoring framework which has been developed 

by ETHZ. The framework can be adapted to inspect several physical parameters by 

periodically reading available sensors and propagating them to the network thanks to a 

lightweight communication protocol based on sockets and out-of-band communication. 

Thanks to that the monitoring framework can be executed in multiple nodes and share the 

monitored events to a centralized entity which organizes the monitored values in topics and 






