
A Flexible & Efficient Shared
Memory Abstraction with Minimal
HW Assistance

C o m pute r A rc h i te c t ure a n d V L S I Sy st e ms (C A RV) L a b o rato r y
F O R T H – I C S

Nikolaos Kallimanis Manolis Marazakis Nikolaos Chrysos

Unimem Architecture

2

Communication mechanisms of
the Unimem architecture:

1. Load/Store instructions across
remote nodes.

2. Every page of physical memory is
cacheable only in a single node.

3. Efficiently copying large amounts
of memory from/to remote nodes.

4. Send and receive of small atomic
messages in a low latency manner.

 Towards exascale.

Unimem

Interconnect

Node 1 Node 2

Node 3 Node 4

3

How to exercise
the Unimem

remote memory?

Unimem’s APIs

4

Apps
(Unimem

optimized)

Apps
(unmodified)

Apps
(unmodified)

Runtimes
(Unimem
oriented)

Global Shared
Address Space

Remote Memory
SWAP

Apps
(unmodified)

System Software - Unimem testbed
(drivers, etc.)

HW - Unimem testbed
(RDMA, virtual mailbox, virtual packetizer, remote memory access)

Unimem Sockets
(modified libc)

Unimem Interfaces
(Remote DMA, etc.)

GSAS - Global Shared Address Space

1. Global Shared Address Space across system’s remote nodes.

2. It is mostly implemented based on mechanisms for
sending/receiving small messages atomically.

 No complex hw-coherence protocols.

 Flexibility.

3. API resembles to shared memory communication.

4. Applications can use this API for synchronization and for utilizing
remote memory.

5. Data are cached in the node that reside on → cacheable at single
node.

 This is a Unimem property.

5

GSAS - SW & HW Stack

6

GSAS Environment

Unimem Interconnect (i.e. Exanet)

Unimem -
User level
libraries

Drivers

Node #1

mbox
packet-

izer

Unimem -
User level
libraries

Drivers

Node #2

mbox
packet-

izer

Unimem -
User level
libraries

Drivers

Node #3

mbox
packet-

izer

Unimem -
User level
libraries

Drivers

Node #4

mbox
packet-

izer

SW

HW

Overview of the GSAS environment

GSAS Address Space

Node 1

0x0001-0000-0000-0000

0x0002-0000-0000-0000

0xFFFF-0000-0000-0000

0x0003-0000-0000-0000 …

Node 2

Node N

7

o64-bit Global Address
Space.

oThe first 16 bits contain
the routing information.
 node-id.

oThe remaining 48 bits
indexing the memory of
each node.

node-id (16 bits)

GSAS - Functionality
Applications that use the GSAS
API are able to:
o Allocate of memory in any

remote node.

o Spawn new processes on any
remote node.

o Execute atomic operations
(i.e., CAS, FAD, SWAP, etc.) on
any remote memory location.

Low latency primitives
(Exanet on QFDB prototype).
o ≈ 1 – 2 μsec for a remote

issued atomic instruction.
o A few nsec for local issued

atomic instruction.

GSAS Addresses

0x0001-0000-0000-0000

0x0002-0000-0000-0000

0xFFFF-0000-0000-0000

0x0003-0000-0000-0000

8

App

Application Programming Interface

9

allocSharedPage Allocation of remote/local memory

freeSharedPage Free allocated memory

remoteFork Spawn of a new process on some remote node

Read/Write Read/Write operations

CAS Compare&Swap operations

FAD Fetch&Add operations

SWAP SWAP operations

BarrierJoin/
BarrierDestroy

Functionality for Barriers

Overview of the GSAS environment

10

oThere is an atomic service at
each node that serves remote
requests.

oAtomic service is running on
core 0 on every node of the
system.

oApps and the atomic service
communicate through small
atomic messages with low
latency.

oThere is a user-space library
that handles the requests on
the issuer side.

Unimem

Interconnect

Node 2

Packetizer Mailbox

Node 1

Packetizer Mailbox

Node 3

Packetizer Mailbox

Node 4

Packetizer Mailbox

Atomic Service

GSAS – Architecture

11

Atomic
Service

Node X

APP

Node Y

APP

Unimem Interconnect (Exanet)

o Processes perform atomic operations on the allocated space on any node
(local or remote).
o i.e., CAS, FAD, atomic READ, etc.

oOnly operations performed by remote process are applied by the atomic
service ⇨ Improved Performance.

Experimental Testbed

oExperiments on a Unimem testbed (2 QFDB board):

oEach board is equipped with 4 nodes, each of which:
‒ Zynq MP Ultrascale+ SoC.

‒ 4 Arm A53 cores @ 1.4 GHz.

‒ 16 GB of local DDR4.

‒ Exanet network interfaces.

12

QFDB 0 QFDB 1

Latency Microbenchmarks

Trenz
prototype

QFDB (1 hop) QFDB (2 hop)
Comments

GSAS Write 4.0 usec 1.0 usec 1.5 usec 64-bit write

GSAS Read 4.0 usec 1.5 usec 2.0 usec 64-bit read

GSAS
Fetch&Add

4.0 usec 1.5 usec 2.0 usec
64-bit

Fetch&Add

Small Message
Transfer

1.9 usec 0.7 usec 1.2 usec
32 bytes - one

way

13

QFDB 0 QFDB 1

GSAS Performance Evolution

0

2

4

6

8

10

12

14

Juno Protorype (2016) Trenz Prototype (2017) QFDB Prototype (2018)

La
te

n
cy

 p
e

rf
o

rm
an

ce
 in

 u
se

c Remote Ref. Perfomance

Local Ref. Perfomance

14

Example App: Distributed Hash Table

15

oA concurrent Distributed Hash
Table is implemented on top of the
GSAS environment.

oAny thread that runs on any node
of the system is able to access/
modify the stored data by using
Put and Get operations.

oPut and Get operations are
executed concurrently.
There is no dedicated server for

serving the requests.

oThe data structure is able to use
the memory of the all available
cores.

Node 1

Node 2

Node N

…

DHT

DHT Performance on GSAS

16

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Th
ro

u
gh

p
u

t
m

ill
io

n
s

o
p

er
at

io
n

s/
se

c

nodes

Trenz prototype

QFDB protoype

Workload = 100% DhtGet

DHT Performance on GSAS

17

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6 7 8

Th
ro

u
gh

p
u

t
m

ill
io

n
s

o
p

er
at

io
n

s/
se

c

nodes

Trenz Prototype

QFDB Prototype

Workload = 80% DhtGet + 20% DhtPut

Conclusions
oGSAS provides Global Shared Address Space across system’s remote
nodes.

oIt is mostly implemented based on mechanisms for sending/receiving
small atomic messages.
 No complex hw-coherence protocols.

 Flexibility.

oAPI resembles to shared memory communication.

oThe latency of remote operations is about 1 – 2 usec (1 or 2 hop
distance).

oA GSAS use-case example is considered, i.e. a Distributed HashTable.

18

Thank You

19

