

Project No. 671578 ExaNoDe Deliverable D3.7 Page i of v

D3.7

Operating System Support for ExaNoDe

Workpackage: 3 Enablement of Software Compute Node

Author(s): Nikolaos D. Kallimanis FORTH

 Manolis Marazakis FORTH

 Manolis Skordalakis FORTH

Authorized by Manolis Marazakis FORTH

Reviewer Pierre-Yves Martinez CEA

Reviewer Kevin Pouget VOSYS

Consolidating

Reviewer
Elyes Zekri ATOS

Dissemination

Level
PU

Date Author Comments Version Status

2017-07-19 N. D. Kallimanis First version of the document,

with section outlines.

v0.1 Draft

2017-07-28 N.D. Kallimanis Material for the 2
nd

-generation of

the GSAS environment added.

v0.2 Draft

2017-08-02 E. Skordalakis Material for the KRAM remote

swap space added.

v0.3 Draft

2017-08-28 M. Marazakis Material for the NUMA support.

Enhancements on Section 3.0.

v0.4 Draft

Project No. 671578 ExaNoDe Deliverable D3.7 Page ii of v

2017-08-31 N. D. Kallimanis,

M. Marazakis

Document ready for internal re-

view.

v0.5 Draft

2017-09-08 N. D. Kallimanis,

M. Marazakis

Editorial changes, inclusion of an

overview figure

v0.6 Draft

2017-09-09 N.D. Kallimanis Editorial changes. v0.7 Draft

2017-09-10 N. D. Kallimanis,

M. Marazakis

A few editorial changes. v0.8 Release to

ExaNoDe

reviewers

2017-09-25 N. D. Kallimanis,

M. Marazakis

Revision based on comments by

Kevin Pouget, Pierre-Yves Mar-

tinez, and Elyes Zekri.

v0.9 Draft

2017-09-26 N. D. Kallimanis,

M. Marazakis

Final edits. v1.0 Final

Project No. 671578 ExaNoDe Deliverable D3.7 Page iii of v

Executive Summary

In this deliverable, we describe the evolution of firmware and operating system support that

we have developed to support the Unimem architecture on the current-generation ExaNoDe

multiboard prototype. We focus on the extensions that we have designed and implemented in

two major areas of functionality:

(a) The global shared address space (abbr. GSAS environment) and its communication

mechanisms. We describe the GSAS architecture in detail, while giving a brief overview of

the hardware and software components that it is based on. We also provide a description of

the hardware-software interface of the hardware components co-designed for use by the

GSAS environment.

(b) The use of remotely-accessible memory as a swap device, to augment the memory space

available to applications executing on a Unimem compute-node. This is one of several use-

cases for remotely-accessible memory that we have explored. Other use-cases briefly de-

scribed in this deliverable include using memory from remote nodes via allocator modules,

both in user-space and in kernel-space, remote memory.

Finally, we describe our work towards adding NUMA (Non-Uniform Memory Access) sup-

port in the operating system.

Project No. 671578 ExaNoDe Deliverable D3.7 Page iv of v

Table of Contents

1 Introduction .. 1

2 Global Shared Address Space .. 5

2.1 GSAS architecture overview ... 5

2.2 Protection on GSAS environment ... 8

2.2.1 Protection properties ... 8

2.2.2 Implementation of protection in GSAS environment ... 9

2.2.3 Restrictions on protection ... 12

2.3 Application interface extensions .. 12

2.4 GSAS performance evaluation .. 12

2.5 A distributed in memory key-value store on GSAS environment 15

2.5.1 Supported functionality .. 15

2.5.2 DHT implementation .. 15

2.5.3 DHT performance evaluation ... 17

2.5.4 The kram module .. 20

2.5.5 The kram daemon ... 20

2.5.6 Mailbox communication ... 20

2.5.7 Message format .. 20

2.5.8 Communication protocol .. 21

2.6 Swap device management .. 22

2.6.1 Operations at module initiation .. 22

2.6.2 Operations at runtime ... 23

2.6.3 Operations at exit .. 23

2.7 Other use-cases for memory on remote nodes ... 23

3 KRAM: Remote SWAP Space ... 25

3.1 KRAM architecture ... 25

3.2 Swap instance creation .. 25

3.3 KRAM dependencies ... 26

4 NUMA support in the operating system ... 28

4.1 Implementation concepts for NUMA support in the Linux kernel 28

4.2 Implementing libNUMA infrastructure on ARM-based systems 29

4.3 Enablement of different service levels for libNUMA ... 30

5 Concluding remarks ... 32

6 References .. 33

Project No. 671578 ExaNoDe Deliverable D3.7 Page v of v

Table of Figures

Figure 1. Overview of the Unimem architecture. ... 1

Figure 2. Overview of an RDMA Operation. ... 2

Figure 3. The programming interfaces that the Unimem provides and their interactions. 4

Figure 4. A high-level overview of the architecture of the hardware prototype consisting of 4

nodes. .. 5

Figure 5. The hardware and the software stack for the GSAS environment. 6

Figure 6. An overview of the addressing system that the GSAS environment offers (Addresses

in Hex). ... 7

Figure 7. An example of an imaginary tree of remoteFork calls. Thread s are

instantiated by executing binary , while threads are instantiated by executing

binary B. ... 9

Figure 8. Thread P6 is not able to access the memory allocated by thread P6’. 10

Figure 9. Description of the request packet of an atomic operation. .. 11

Figure 10. The protection architecture of the GSAS environment. .. 11

Figure 11. Average throughput of a Fetch&Add operation on a single variable for different

numbers of nodes and threads. ... 13

Figure 12. Average throughput of Fetch&Add operations on many different variables for

different numbers of nodes and threads. .. 14

Figure 13. Basic data structures for the DHT application. ... 16

Figure 14. Description of the structure of a DHTNode. ... 17

Figure 15. Throughput of dhtGet operations with different numbers of nodes and threads per

node. ... 17

Figure 16. Throughput of dhtPut operations with different numbers of nodes and threads per

node. ... 18

Figure 17. Throughput of dhtPut and dhtGet operations (80% dhtPut and 20% dhtGet) with

different numbers of nodes and threads per node. .. 19

Figure 18. Throughput of dhtPut and dhtGet operations (50% dhtPut and 50% dhtGet) with

different numbers of nodes and threads per node. .. 19

Figure 19. Message format of the KRAM communication protocol. 21

Figure 20. The KRAM communication protocol. .. 22

Figure 21. KRAM architecture (node 0 requests memory from node 1). 26

Table of Tables

Table 1. Latency (in μsecs) of a Fetch&Add operation on some remote memory location. 14

Table 2. libNUMA API calls on ExaNoDe Testbed. ... 31

Project No. 671578 ExaNoDe Deliverable D3.7 Page 1 of 33

1 Introduction

The Unimem Architecture plays a central role in the ExaNoDe project, and also has been the

basis for related projects, i.e., EUROSERVER (1) and ExaNeSt (2). The Unimem architecture

consists of a powerful set of mechanisms that provide efficient communication among the re-

mote nodes of a large computational system. The main advantage of the Unimem architecture

over conventional communication architectures (i.e., coherent shared memory systems and

message passing computational systems), is that it offers more advanced communication

mechanisms than the conventional message passing systems and eliminates the complexities,

the performance overheads, and the costs that the large-scale coherent shared memory sys-

tems induce.

The Unimem architecture is a technology that was first developed within the EUROSERVER

project (1), (3). A computational system that implements the Unimem architecture consists of

a set of computational nodes that are connected through a custom network. Each computa-

tional node consists of a set of processing cores, which communicate among each other using

some coherent shared memory protocol provided by the hardware. Unimem enables the nodes

to directly access areas of memory located in remote nodes. More specifically, in the Unimem

architecture, there is a global address space (abr. GAS) that it is accessible to any node inside

the computational system. The local physical memory of each node is mapped to a portion of

the GAS. Therefore, any node in the system has the ability to directly access the physical

memory of any other remote node through the GAS. In order to eliminate the complexity and

the costs that the system-level coherence protocols induce (4), the Unimem architecture im-

poses that each page of the physical memory can be cached by at most one node (see Figure 1

for such a use-case). In principle, the node that caches a page of memory can be the local

node where this page is physically allocated or any other remote node. However, in practice,

it is generally preferable that nodes do not cache remote memory pages.

Figure 1. Overview of the Unimem architecture.

CPU 0

CACHE 0

DRAM 0

CPU 1

CACHE 1

CPU 2

CACHE 2

CPU 3

CACHE 3

DRAM 3

Interconnect

DRAM 2 DRAM 1

Some pages of DRAM1 cached in CACHE0 of CPU0, but NOT in CACHE1 of CPU1

(or flushed form CACHE1 of CPU1, if previously cached there)

NODE 0 NODE 1 NODE 2 NODE 3

Project No. 671578 ExaNoDe Deliverable D3.7 Page 2 of 33

The most notable characteristics of the Unimem architecture are the following:

1. Load and store instructions are allowed across remote nodes, to any address within the

GAS. Thus, any node of the computational system is able to access any part of the

memory of any remote node via conventional load and store instructions (see Fig-

ure 1).

2. Every page of physical memory can only be declared cacheable in a single node at

most, this node is called owner node. The owner node is usually the node whose local

memory contains this page of memory, but it could also be any remote node that uses

the page by borrowing memory from another node (see Figure 1).

3. Unimem provides the ability of efficiently copying large amounts of memory from/to

remote nodes. This is achieved by using the Remote Direct Memory Access (RDMA)

block transfers. This is a communication mechanism supported by the hardware and

enables efficient zero-copy transfers of large portions of data. The Unimem architec-

ture provides the ability that an RDMA block transfer can be initiated at user-level in a

protected way, without paying the overhead of a system call. It thus drastically reduces

the latency and the energy consumption of communication across remote nodes (see

Figure 2). Significantly, this type of communication has the advantage that it is per-

formed by a separate, dedicated hardware (DMA) engine. This engine executes com-

munication primitives in parallel with the main processor performing other, overlap-

ping computations giving the main processor the ability to execute other, overlapping

computations.

4. Unimem also offers the mailbox hardware primitive, which gives processes that reside

on remote nodes the ability to receive notifications. By using mailboxes, processes are

able to send/receive synchronization mechanisms to/from processes that reside on re-

mote nodes. The hardware gives processes the ability to access the mailboxes via user-

level library calls in a protected way, without paying the overhead of a system call.

Figure 2. Overview of an RDMA Operation.

Thanks to these abilities, Unimem appears as an evolution of both shared memory and mes-

sage passing parallel architectures:

 Shared Memory: Since all memory words within the entire GAS are accessible by

any node using conventional load and store instructions, Unimem is a shared memory

Project No. 671578 ExaNoDe Deliverable D3.7 Page 3 of 33

system. However, we avoid the high cost of system-wide hardware cache coherence

protocols, by requiring that every memory page can only be cached within a single

node at most. Thus, all the other remote nodes may also enjoy consistent accesses to

the data by employing un-cached, remote memory accesses. This kind of accesses is

more expensive, since it is un-cacheable. However, this cost is acceptable provided

that remote accesses are infrequent, which is Unimem’s response to the often made

observation that “cache coherence is nice to have, provided you do not frequently

use it”.

 Message Passing: The Unimem architecture allows making bulk data transfers di-

rectly into the receiver’s memory, i.e., zero-copy RDMA. Thus, additional copies of

the data induced by conventional message passing systems that do not support this

feature are avoided. In this way, this type of data copying (i.e., RDMA) becomes the

multi-word generalization of remote store instructions. Recall that this type of com-

munication is performed by a separate, dedicated hardware (DMA) engine, giving the

main processor the ability to execute other, overlapping computations in parallel.

Therefore, the system’s performance is enhanced in terms of time and energy.

The Unimem architecture is already implemented in a system consisting of a few ARM-based

micro-servers (i.e., nodes) designed and prototyped by the EUROSERVER (1). Each node is

based on the Trenz ARM development platform (5), and it has the following key properties:

 It consists of several processing cores (up to 4), which all of them consisting of a co-

herence island. Communication among the processing cores of a coherence island is

performed through a coherent shared memory protocol provided by the hardware of

the processor. Nodes are able to share I/O devices and accelerators that are attached to

any other remote node resulting to better I/O performance and flexibility.

 There is a partitioned global address space (abr. PGAS), consisting of the aggregation

of the physical memory of multiple nodes (i.e., coherence islands), where each mem-

ory page has a single owner. Thus, each node owns a part of the PGAS and the whole

of its local physical memory can be accessed by any remote node through the PGAS.

A processor of any node can access any page of the PGAS, by issuing conventional

load and store instructions, which are transparently routed by the hardware to the ap-

propriate node that the memory resides on. This is achieved by adding non-trivial ex-

tensions to the processor’s data-path that can only be implemented in an open plat-

form.

 Since we aim to implement an extremely scalable computational system, we have to

reduce or even eliminate the overheads that are related to coherency protocols. Thus,

our system imposes the following important property: from the point of view of a

processor, a memory page can be either at the cache of a remote node or at the cache

of local node, but not at both. This is the basis of the Unimem consistency model,

which eliminates the need of maintaining global-scope cache coherence protocols.

 The Unimem consistency model (i.e., caching each memory page only among the

nodes of a single coherence island) gives to application code the ability to be executed

without the risk of data inconsistency. Furthermore, the consistency model of Unimem

effectively pushes the application developers or runtime systems to place their compu-

tations close to data. In this manner, the locality of data is improved having as result

the reduction of power consumption and the mitigation of performance bottlenecks in-

duced by the data movement.

 The current version of the platform also provides, today, via Unimem: Remote Direct

Memory Access (RDMA) and asynchronous interrupts to remote nodes, via mail-

Project No. 671578 ExaNoDe Deliverable D3.7 Page 4 of 33

boxes. It is noticeable that the existing software consisting of either shared-memory or

message-passing applications, can run on the platform with minimal or moderate

modifications.

Figure 3. The programming interfaces that the Unimem provides and their interactions.

In this task, we leverage the advantages of a current implementation of the Unimem architec-

ture by exposing a set of programming frameworks as shown in Figure 3. These programming

frameworks provide a powerful set of communication mechanisms to developers and to run-

time systems, resulting systems that are scalable for large numbers of nodes. These program-

ming environments are the following:

1. The global shared address space environment and the communication mechanisms that

it provides. The GSAS environment defines an application interface (API) that is an

extension of the GAS that the Unimem architecture provides. GSAS gives the ability

to processes running across remote nodes to communicate in a way resembling a sys-

tem that provides coherent shared memory communication. More specifically, the

GSAS environment allows the applications to allocate/de-allocate virtual shared ad-

dress space, to perform several atomic operations (i.e., read, write, Compare-And-

Swap, etc.), on the allocated space by using the appropriate library calls that the envi-

ronment provides.

2. A library that enables user-space initiation of DMA transfers. The DMA engine of the

underlying system is capable of transferring to/from any memory location throughout

the whole global memory space. The main part of this work aims to expose the func-

tionality of the DMA engines that Unimem provides to the user space.

The sockets over RDMA. With Sockets over RDMA, a Unimem system can utilize low-

latency communication among local nodes, by the means of fast RDMA transactions that by-

pass the kernel network stack. Furthermore, we give a description of the custom mailbox

mechanism with which a kernel-space or user-space application can send and receive mes-

sages to and from remote nodes, thus enabling remote notification capability

.

Apps

(optimized for Unimem)

Apps
(unmodified)

Apps
(unmodified)

Runtime Systems
(optimized for Unimem)

Unimem Interfaces
(Remote DMA, etc.)

Global Shared Address

Space

Sockets optimized for Unimem

(modified libc)

Unimem testbed
(RDMA, virtual mailbox, virtual packetizer, remote memory access)

Project No. 671578 ExaNoDe Deliverable D3.7 Page 5 of 33

2 Global Shared Address Space

In this chapter, we describe the current generation of the GSAS environment and the provided

mechanisms for inter-process communication across different nodes (i.e. Trenz prototype

nodes).

2.1 GSAS architecture overview

Our global shared address space defines an application interface (i.e. API) that gives the abil-

ity to processes running across remote nodes to communicate in a way that resembles shared

memory communication. More specifically, the GSAS environment allows the applications to

allocate/de-allocate remote parts of the shared address space and to perform reads, writes and

other atomic operations on the allocated space using the appropriate library calls.

In the GSAS environment, all the read, write and atomic operations on the allocated address

space are performed via special user-level library calls and not via conventional load and store

instructions provided by the ARM processors. Since these calls are user-level and do not in-

volve operating system's kernel, they have a low-latency, fast communication mechanism.

Note that in large scale systems, the main overhead of an atomic instruction to some remote

memory location is mainly the network latency, i.e. the order of magnitude of network latency

is microseconds, while the order of magnitude of a user-level library call is a few nanosec-

onds. Therefore, the overhead of a call to a user-level library is minimal.

Although the communication mechanism of the GSAS environment is efficient, local memory

accesses performed by the conventional ARM processor instructions are more efficient. Thus,

the communication mechanisms provided by the GSAS environment should not be used in

cases that do not involve communication among remote processes.

Figure 4. A high-level overview of the architecture of the hardware prototype consisting of 4 nodes.

Custom Interconnect

Atomic service is running on core 0 on every node of the system

Node 2

Packetizer Mailbox

Node 1

Packetizer Mailbox

Node 3

Packetizer Mailbox

Node 4

Packetizer Mailbox

Project No. 671578 ExaNoDe Deliverable D3.7 Page 6 of 33

The current version of the prototype consists of a set of computing nodes (i.e., Trenz devel-

opment boards) that are connected through a custom interconnection network. Each of the

computing nodes contains 4 ARM Cortex-A53 processing cores running at 1.2 GHz and is

equipped with 2 GB of DDR4 RAM clocked at 600 MHz. Any of the processing cores is able

to communicate with any other local and/or remote processing core via a custom network that

is described in (3). Figure 4 presents a high-level overview of the system description.

The main network mechanisms that are used by GSAS environment for communication

among remote nodes are the virtualized mailbox and the virtualized packetizer. Each node of

the system is equipped with a virtualized mailbox that contains 64 interfaces and a virtualized

packetizer that also contains 64 interfaces. Thus, 64 threads per node are able to use the func-

tionality of the GSAS environment at each point in time. Each of these threads is able to send

a network packet to the mailbox of any other remote or local thread using one allocated inter-

face of the local packetizer. Any thread is able to receive a network packet using one allocated

interface of the local mailbox. A network packet contains the appropriate data describing the

atomic operation that the sender thread wants to perform. The virtualization of the mailbox

and packetizer hardware blocks enables system’s threads to use a private instance (or inter-

face) of them without having to take into account that other threads may access the same

hardware blocks concurrently. Thus, any thread is able to directly use the functionality pro-

vided by the virtualized packetizer and mailbox hardware blocks without involving the kernel

for sharing the hardware. The atomicity driver that runs on each system’s node is responsible

for managing the virtualized packetizer and the virtualized mailbox interfaces of the node.

Figure 5 shows a brief description of the hardware and software stack.

Figure 5. The hardware and the software stack for the GSAS environment.

In the current generation of the GSAS environment, each node of the system is responsible for

a distinct part of the global address space. On every node, there is a service, called atomic

service, which is responsible for serving atomic requests issued by remote or local threads to

this part of global address space. Each thread that wants to issue an atomic operation prepares

a network packet that describes the atomic operation (i.e., the kind of the atomic operation,

the address that wants to apply the atomic operation, the arguments of the operation, etc.) and

GSAS Environment (i.e., atomics)

User level library

for virtualized

mbox/packetizer

Trenz prototype

board #1

Drivers for virtualized

mbox/packetizer

Unimem Interconnect

User level library

for virtualized

mbox/packetizer

Trenz prototype

board #2

Drivers for virtualized

mbox/packetizer

User level library

for virtualized

mbox/packetizer

Trenz prototype

board #3

Drivers for virtualized

mbox/packetizer

User level library

for virtualized

mbox/packetizer

Trenz prototype

board #4

Drivers for virtualized

mbox/packetizer

Project No. 671578 ExaNoDe Deliverable D3.7 Page 7 of 33

sends it (by using its allocated packetizer interface) to the mailbox of the responsible remote

atomic service. The atomic service that receives the packet in its mailbox, applies the de-

scribed atomic operation to its local memory and responds to the issuer by sending to it a re-

sponse packet.

The GSAS environment supports addresses of 64 bits. The address space consists of N =

partitions (see Figure 6). Each of these partitions is of size bytes and it is strongly related

to at most one computing node. Thus, at most compute nodes are supported. In case that

the system is equipped with compute nodes, only the first parts of the address

space are used. In this case, the address space of the GSAS environment is of size

bytes. Therefore, the 16 most significant bits of an address contain all the appropriate routing

information. Whenever a thread wants to apply an atomic operation on some address of the

GSAS environment, it can extract the destination node from the address itself.

The addressing policy of the global address space described above, leads us to allocate the

first most significant 16 bits (out of the 64 bits) of an address for identifying which node this

address belongs to. The remaining 48 bits are available to each node for internal addressing of

all of its local memory. The address space that is handled by a node is partitioned in pages,

where each page is of size 4096 bytes (or 1000 in Hex). For example, the virtual address

0x0002-0000-0000-1001 (in Hex) points at the second word of the second virtual page of the

second partition of the global address space. This address also states that the contained data

are placed on the node of the system with id 1.

Figure 6. An overview of the addressing system that the GSAS environment offers (Addresses in Hex).

Global Address Space System’s Nodes

Node 1

0x0001-0000-0000-0000

0x0002-0000-0000-0000

0xFFFF-0000-0000-0000

0x0003-0000-0000-0000
…

Node 2

Node N

Project No. 671578 ExaNoDe Deliverable D3.7 Page 8 of 33

2.2 Protection on GSAS environment

In this Section, we present in detail the protection properties (see Section 2.2.1) that the

GSAS environment imposes to the applications running on top of it. The implementation of

the protection properties is discussed in Section 2.2.2.

2.2.1 Protection properties

We first describe the protection properties that are imposed to any multi-threaded application

that runs on the GSAS environment.

Since each thread on the GSAS environment allocates its own virtual mailbox and packetizer

channel, we refer to threads and not processes in our model. Let some thread that executes

the binary code of some file . Denote by , the creation of a local or a remote thread

 by thread . Thread could execute either the same binary of code or any other binary

code . Denote by , the tree of threads that resides on. Let be any thread of the

tree of threads . We say that is the root node of tree , if there is not exist some

thread such that and

Denote by any sequence of threads (let them be) such that
 . We say that is an ancestor of , if there is a non-empty sequence

 of k> threads such that and .

Let and be any two threads that are running in the system. It holds that , if
there is a thread such that is an ancestor for both and . Therefore, both threads

and are members of the same tree of threads.

Denote as any allocated chunk of memory of some thread . Denote by
 , the ability of thread to execute atomic operations on any memory chunk allo-

cated by thread . Denote also by , the inability of thread to execute atomic

operations on any memory chunk allocated by some thread (i.e. process terminates its

execution abnormally if tries to execute an atomic operation in such memory chunk).

Let and be two threads that run on the GSAS environment, the following invariants hold:

i. .

ii. If , then it holds that and .

iii. If , then it holds that and .

Figure 7 and Figure 8 show a few examples of the protection properties (i.e., invariants i-iii)

that are imposed to the applications running on the GSAS environment. Figure 7 illustrates a

tree of threads. Threads to (i.e. illustrated as blue nodes) execute the same binary file

 , while threads to (i.e. illustrated as orange nodes) execute some other binary file

 . Since all threads to are members of the tree , any thread is able to access any

other memory chunk allocated by some other thread of . For example, Figure 7 shows that

 is able to access any memory allocated by and without having to take into account

the binary file that and execute. Moreover, Figure 7 shows that is able to access any

memory chunk allocated by , without also having to take into account the binary that

executes.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 9 of 33

Figure 7. An example of an imaginary tree of remoteFork calls. Threads are instantiated by exe-

cuting binary , while threads are instantiated by executing binary B.

Figure 8 illustrates two trees of threads and . Threads to and to (i.e. illus-

trated as blue nodes) execute the same binary file , while threads to (i.e. illustrated as

orange nodes) execute some other binary file . By invariants i-iii, it follows that all

threads to are members of the tree , any thread is able to access any other memory

chunk allocated by some other thread of . Furthermore, invariants i-iii imply that any of

threads to is not able to access any chunk of memory allocated by threads
 to

 , ig-

noring the fact that both set of threads execute the same binary file. By invariants i-iii, it is

also implied that threads
 to cannot access any chunk of memory allocated by any

thread to of tree .

2.2.2 Implementation of protection in GSAS environment

In the GSAS environment, there are two kinds of entities in terms of protection, i.e. the

trusted entities and the untrusted entities. The trusted entities are the following:

1. Hardware entities, i.e. Packetizer and Mailbox.

2. The atomicity driver that handles the Packetizer and Mailbox hardware entities.

3. The atomic service that runs on each system’s node

The untrusted entities are the following:

1. Any thread of a user-space application.

2. The user-space library that handles the atomic requests on the issuer side.

The key architectural design-point on the GSAS environment is that the trusted entities pro-

vide a restricted way for communication to the untrusted entities (i.e. the GSAS environment

users). Moreover, only the trusted entities are able to set-up/modify the protection ids. This

results in a protection scheme that guarantees that a thread using the functionality of the GSA

environment cannot impersonate some other thread. This gives the ability on threads that run

T

Project No. 671578 ExaNoDe Deliverable D3.7 Page 10 of 33

on top of the GSAS environment to be able to access the memory areas that are implied by the

protection model described on Section 2.2.1.

Figure 8. Thread P6 is not able to access the memory allocated by thread P6’.

We now describe how the protection scheme of the GSAS environment is implemented. As

already pointed out, each atomic operation issued by some thread is described by a network

packet that is transmitted to the atomic service of the appropriate remote node (see Section 2.1

for a more detailed description). All the packets that describe atomic operations consist of a

header of 56 bits and a payload of 200 bits. The first field of the header is of size 24 bits and

uniquely describes the sender of the packet (see Figure 9). This field consists of the interface

id (each virtual interface of some has a unique id on the local board) and the board id (each

board in the system has a unique id). The next field also consists of 24 bits and is the protec-

tion id of the thread. The protection id is a unique number that share all the processes of the

same tree of threads (see Section 2.2.1 for a formal definition of the tree of threads). Every

thread at its creation time is assigned a protection id that is equal to its thread id and therefore,

it is unique. The payload is written by the user-space library that issues atomic operations.

The role of the payload is to describe the destination, the arguments and the type of the atomic

operation that will be applied. Since the user-space library that issues atomic operations could

be sided over by an erroneous or malicious user application, it is not a trusted entity and thus,

it is not allowed to write the first 56 bits that are important for the protection scheme of the

GSAS environment. In contrast to packet’s payload, the header of the packet (the first 56 bits)

is written only by the Packetizer hardware block.

Each thread that is running on the GSAS environment allocates by requesting atomicity

driver, a pair of virtual interfaces, one for the Mailbox and one for the Packetizer. The atomic-

ity driver is responsible for setting-up the thread id and the protection id to the allocated vir-

tual interface of the Packetizer. Whenever a thread allocates a pair of Packetizer and Mailbox

hardware blocks, the atomicity driver set-ups the Packetizer hardware block in way that the

Packetizer interface writes the thread and protection id of the thread on every packet that is

Project No. 671578 ExaNoDe Deliverable D3.7 Page 11 of 33

transmitted over the network. In case that this thread is the first thread of the application that

allocates the pairs of Packetizer and Mailbox interfaces, its thread id and its protection id

are the same (the case that this thread is spawned by some other thread is described in a later

part of this section). Therefore, any thread (and also the atomic service) that receives a packet

from some remote thread, it has the ability to safely identify the origin of the packet. Since the

atomic service bookkeeps the owner (i.e. the protection id) for each allocated page, it is able

to safely deny to respond on requests to memory issued by threads that are not allowed to.

0 24 48 56 64 127

Thread &

Node ID

Protection

ID
Reserved

OP

CODE
Instruction Address

Argument 1 Argument 2

Figure 9. Description of the request packet of an atomic operation.

Figure 10 shows a detailed description of the packet’s flow. More specifically, some thread on

node issues an atomic operation by transmitting a network packet for a memory location

that resides on node . Since only the payload of the transmitted packet is written by the is-

suer thread (an untrusted entity), the header that contains the information of thread and protec-

tion ids is written by the Packetizer hardware block. Thus, the receiving endpoint, which is

the atomic service on node , is able to safely identify the sender thread that resides on node

 . In case that the issuer thread of node tries to apply an atomic operation on some memory

location that it is not allowed to on node , the atomic service on node rejects the packet

describing this operation.

For allowing two or more remote threads accessing the same chunks of memory, the GSAS

environment provides special functionality to an application for spawning remotely threads,

i.e. remoteFork operation (see (6) for a detailed description).

Figure 10. The protection architecture of the GSAS environment.

This functionality not only eases the creation of threads on remote nodes, but it also enables

the use of the same protection id for threads that reside on different nodes. Whenever a thread

wants to spawn a thread (or process) to some remote node, it calls remoteFork giving as ar-

guments the node id (i.e. in which node the process should be spawned on) and the path of the

binary file that the remote thread should execute. remoteFork creates a packet that describes

the spawn operation and it sends it to the atomic service of the remote node. Whenever, the

atomic service of the remote node receives the packet that describes the spawn operation, it

creates a new thread. The newly created thread initially owns a protection id that is equal to

its own thread id (the standard behaviour of atomicity driver when a thread allocates a pair of

packet describing

atomic operation

Node B Node A

Packetizer Mailbox Packetizer Mailbox

Project No. 671578 ExaNoDe Deliverable D3.7 Page 12 of 33

Mailbox and Packetizer interfaces, is to assign a protection id to the thread equal to its id). Af-

terwards, the atomic service changes the protection id of this newly created thread to an id

that is equal to the id of the thread that issued the spawn operation. Recall that the atomic ser-

vice extracts the id of the issuer thread from the header of the received packet. Thus, it can

safely set the protection id of the newly created thread to match the protection id of the issuer

thread. This gives the ability to one or more threads (i.e. thread that are in the same tree of

threads) to access the same chunks of memory.

2.2.3 Restrictions on protection

In the current version of the GSAS environment, the following restrictions on the implemen-

tation protection scheme hold.

 Let be any tree of threads (see Section 2.2.1) and let be its root thread. In the cur-

rent implementation of GSAS environment, invariants i-iii hold only if thread waits

for all of its descendant threads to finish their execution. Thus, for any application that

wants to strictly follow the protection model of Section 2.2.1, the root thread of the

tree of threads should wait (e.g. on a barrier, etc.) all the spawned threads to finish

their execution.

 At the current protection model, two threads that belong to different trees of threads

are not able to communicate using the mechanism provided by the protection scheme

of the GSAS environment. In future versions of the GSAS environment, we aim to

provide some forms of communication of threads that belong to different trees of

threads.

2.3 Application interface extensions

In this section, we provide a detailed description of the new functionality that the GSAS envi-

ronment offers to the user applications. In this version of the GSAS API (i.e., v1.1), we pro-

vide some new operations that are able to read or write shared memory variables in chunks of

128 bits and/or 256 bits. By providing these new operations, a user application is able to ac-

cess larger chunks of remote memory areas (Read and Write operations of 128 or 256 bits)

with a single atomic operation, resulting significant performance gains.

 uint128_t READ128(uint64_t *addr): READ128 returns the current 128-bit value

that is stored in address addr. In case that addr is an invalid pointer, application exits

abnormally.

 uint64_t READ256(uint64_t *addr, void *buffer): READ256 stores on local

memory pointed by buffer, a vector of 256-bit values that are stored in address addr.

In case that addr is an invalid pointer, application exits abnormally.

 void WRITE128(uint64_t *addr, uint64_t val[2]): WRITE128 atomically writes a

vector of two 64 bit words val in address addr. In case that addr is an invalid pointer,

application exits abnormally.

2.4 GSAS performance evaluation

We evaluated the performance of GSAS environment in the Trenz prototype. The Trenz pro-

totype consists of 4 nodes (i.e. 4 Trenz boards), each being equipped with 4 A53 processing

cores. The atomic service is pinned at core zero of each of the nodes. We used the gcc 4.9.2

compiler. The operating system was Linux with kernel version 4.4.0. To prohibit the linux

Project No. 671578 ExaNoDe Deliverable D3.7 Page 13 of 33

scheduler from doing unnecessary kernel thread migrations, threads were pinned in all exper-

iments: the i-th thread was bound on core (i+1)-th core.

For our experiments, we first consider a synthetic benchmark, called the Fetch&Add bench-

mark, which is similar to that presented in (7). In this benchmark, we measure the maximum

number of atomic operations (i.e., Fetch&Add
1
 operations) could be executed on a single, re-

mote memory location. The Fetch&Add object is simple enough to exhibit the overheads of

the GSAS environment induced by the consecutive execution of atomic operations on a sin-

gle, remote memory location issued by large number of threads. Each instance of the bench-

mark simulates Fetch&Add operations, in total, with each of the n threads simulating

 Fetch&Add operations out of the total Fetch&Add operations. For the measurement of

the average throughput, each experiment is executed 10 times. The remote shared variable

was allocated using the functionality of AllocSharedPage, and it was located on node with id

equal to 1.

Figure 11 shows the performance of the GSAS environment for different number of nodes

and different number of threads per node. This benchmark shows that the best throughput is

achieved, when the Fetch&Add operations are issued by the local node where the memory lo-

cation resides on. More specifically, the maximum achieved throughput is about 600k opera-

tions per second, and it is achieved by the use of either 2 or 3 threads. By increasing the num-

ber of nodes that issue Fetch&Add operations, the throughput gracefully drops at about 400k

operations per second for the case of 4 nodes.

Figure 11. Average throughput of a Fetch&Add operation on a single variable for different numbers of

nodes and threads.

In the next experiment, illustrated on Figure 12, we measure the throughput of Fetch&Add

operations for different numbers of shared variables and not for a single remote location.

More specifically, -axis shows the number of the nodes that the experiment is performed,

while the -axis shows the achieved throughput. The remote variables are allocated evenly on

1 A Fetch&Add atomically adds some (positive or negative) value to some memory location and
returns the previous value.

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8

T
h

ro
u

gh
p

u
t

o
p

er
at

io
n

s/
se

c

nodes

1 Thread

2 Threads

3 Threads

Project No. 671578 ExaNoDe Deliverable D3.7 Page 14 of 33

all system’s nodes and each thread randomly choses where to perform a Fetch&Add opera-

tion. This benchmark aims to present how the performance of the GSAS environment scales

under load on many different remote locations. In the experiment of Table 1, we present the

latency of an atomic operation (i.e. a Fetch&Add operation). More specifically, we ran a

benchmark where a single thread running on node with id equal to 1 issued Fetch&Add

operations on a single, remote variable. This variable was allocated by using the

AllocSharedPage functionality provided by the GSAS environment. We run 4 instances of the

benchmark; in the first one, the remote variable was allocated on node 1 (i.e. local node), in

the second one, the remote variable was allocated on node with id 2, etc. Again, for each of

the configurations, the experiment was executed 10 times and average execution time was

taken. We also repeated the above experiment by running the thread that issued the

Fetch&Add operations on different nodes than 1.

Figure 12. Average throughput of Fetch&Add operations on many different variables for different

numbers of nodes and threads.

From/to Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

Node 1 2.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6

Node 2 4.6 2.6 4.6 4.6 4.6 4.6 4.6 4.6

Node 3 4.6 4.6 2.6 4.6 4.6 4.6 4.6 4.6

Node 4 4.6 4.6 4.6 2.6 4.6 4.6 4.6 4.6

Node 5 4.6 4.6 4.6 4.6 2.6 4.6 4.6 4.6

Node 6 4.6 4.6 4.6 4.6 4.6 2.6 4.6 4.6

Node 7 4.6 4.6 4.6 4.6 4.6 4.6 2.6 4.6

Node 8 4.6 4.6 4.6 4.6 4.6 4.6 4.6 2.6

Table 1. Latency (in μsecs) of a Fetch&Add operation on some remote memory location.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1 2 3 4 5 6 7 8

T
h

ro
u

gh
p

u
t

o
p

er
at

io
n

s/
se

c

nodes

1 Thread

2 Threads

3 Threads

Project No. 671578 ExaNoDe Deliverable D3.7 Page 15 of 33

Table 1 shows that the latency is minimal in cases that the thread that issues Fetch&Add op-

erations resides in the same node (i.e. local node) that the remote variable is allocated. In this

case, the achieved latency is 2.6 μsec. In cases that the thread issues Fetch&Add operations

on variables located on other than local node, the achieved latency increases to 4.6 μsec. Giv-

en that each atomic operation, either on the local node or on some remote node, consists of

two network messages (i.e. one packet that describe the operation and one response packet,

see (6) for more details), it follows that the central switch adds about 1 μsec one-way latency.

We aim to reduce this latency significantly in the future implementation of our interconnect.

2.5 A distributed in memory key-value store on GSAS environment

In this section, we present a GSAS use case example, i.e., a Distributed Hash Table (abbr.

DHT). A DHT is a concurrent data structure that enables applications to store pairs of

 items. It also allows applications to retrieve a associated with a given

 . The presented DHT uses the communication mechanisms provided by the GSAS envi-

ronment resulting in a DHT implementation that is highly-scalable.

2.5.1 Supported functionality

We first provide a detailed description of the functionality supported by our DHT on top of

GSAS environment. In the current version of the DHT application, two operations are sup-

ported for storing and retrieving data, i.e. dhtPut and dhtGet. Description for these two opera-

tions follows.

 __uint64_t dhtPut(DHT *dht, uint64_t key, __uint128_t value): dhtPut inserts the

pair of in the concurrent hash-table. In case that there is already some

other pair of values , where , the old pair of values is re-

placed by the new one. In case of success, zero is returned. Otherwise, an error code is

returned.

 __uint128_t dhtGet(DHT *dht, uint64_t key): dhtPut searches for a pair of values
 , such that and returns . In case that such a pair does not exist, dhtGet

returns , which is an invalid value.

2.5.2 DHT implementation

The DHT concurrent data structure that we present in this deliverable consists of two level,

i.e. the first and the second level of hashing. The first level of hashing consists of an array of

 2 elements, each element of the first level array stores 256 bits of infor-

mation consisting either a <key, value> pair or a pointer to a container of the second level of

hashing (see Figure 13). In an effort to enforce different requests to be served by memory are-

as that reside in different nodes, the array of first level hashing is stored across all the sys-

tem’s nodes. More specifically, the first elements reside on node 0,

the second reside on system’s second node, etc. This and the use of a

hash function that uniformly distributes keys on system’s nodes guarantee good load balance

and high performance.

A container of the second level of hashing consists also of array of elements similar to that of

first level hashing, but its size is much smaller. For performance reasons, each container is of

size 4096 bytes matching the page size and the whole container data reside at a single node.

2 is initialized with a value that is big enough to map the whole system’s memory.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 16 of 33

Given that each element of a container is of size 256 bits, 128 entries are available for storing

 pairs.

There are two different hash functions, one for each level of hashing. Denote by the

hash function of level-one of hashing and by the hash function of level-two hashing,

where is a key. returns a value , while

 returns a value .

We first describe the dhtGet operations. Let be any dhtGet operation executed by some

thread that requests the value of some key . At first, computes the level-one hash value

 . is just a pointer to some element of the first-level array. Afterwards, it atomical-

ly reads the -th entry of the first level array by executing a READ256 operation (remind that

each entry of the array of first-level hashing is of size 256 bits). Depending on the value of

 and fields, there are three cases.

 In cast that is equal to , then spins until the field becomes

equal to . Whenever becomes equal to , follows the code-

path of one of two remaining cases depending on the value of the field.

 In case that the indirect field of the entry that was read is equal to false, this entry does

not point to a second level container. In this case, simply compares with the con-

tents of the key field, and returns the value stored in the field of the entry. Oth-

erwise, returns (i.e. invalid value).

 In case is equal to , it follows that the entry of the first-level array of

hashing points to a container of DHT nodes of the second-level of hashing. In this

case, calculates the hash value of the second-level of hashing, let it be
 . Afterwards, follows the pointer to the container and reads the element

of the container by executing a READ256 operation. In case that the key of this entry

is equal to , returns the value stored in the field. Otherwise, returns a

value equal to , which is an invalid value.

Figure 13. Basic data structures for the DHT application.

Each DHTNode structure consists of 5 fields (see Figure 14), i.e. a) the field that points out if

the node is indirect or inner node, b) the field that is used as a lock, c) the field that stores a

1
st
 Level

 of Hashing

2
nd

 Level

 of Hashing

Node 1 Node N …

Project No. 671578 ExaNoDe Deliverable D3.7 Page 17 of 33

version number of the node, d) the field for the key of the <key, value> pair, and e) the field

that stores the value of the <key, value> pair. The key field is of size of 64 bits and the value

field is of size of 128 bits.

The role of the indirect/inner field is to show if a node of the first level of hashing is a simple

entry of pair or is a pointer to a container of the second level of hashing. When-

ever a dhtGet or dhtPut operation takes place, it checks if the node in the first level of hashing

is indirect or not. In case that the node is direct, it checks the key of the direct node and re-

turns. Otherwise, the dhtGet or dhtPut operation reads key which is actually in this case a

pointer, and starts searching to a container of the 2
nd

 level of hashing pointed by this key. The

version field of the DHTNode records the version of the node; at each node update, the ver-

sion number is increased by one.

0 16 32 64 127

indirect lock version key or pointer in case of indirection

Value

Figure 14. Description of the structure of a DHTNode.

2.5.3 DHT performance evaluation

We evaluated the performance of the DHT implementation on the Trenz prototype in a setup

very similar to that presented in Section 2.4. In the experiment of Figure 15, we measured the

performance of the dhtGet operations of our DHT implementation. Specifically, we measured

the average throughput of dhtGet operations for different numbers of nodes and different

numbers of threads per node. DHT implementation was initialized to contain different

keys by using the dhtPut functionality. Similarly to the experiments for the GSAS environ-

ment (Section 2.4), the benchmark was executed 10 times and averages were taken. Figure 15

shows that the throughput of dhtGet operations increases with the number of nodes and/or

threads per node.

Figure 15. Throughput of dhtGet operations with different numbers of nodes and threads per node.

0

100000

200000

300000

400000

500000

600000

700000

800000

1 2 3 4 5 6 7 8

T
h

ro
u

gh
p

u
t

o
p

er
at

io
n

s/
se

c

nodes

1 Thread

2 Threads

3 Threads

Project No. 671578 ExaNoDe Deliverable D3.7 Page 18 of 33

More specifically, the maximum achieved throughput is more than 700k operations per sec-

ond, and it is achieved by the use of 3 threads. By increasing the number of nodes that issue

dhtGet operations, the throughput increases almost linearly for more than two nodes. This

shows the system’s capability to increase its performance while increasing the degree of par-

allelism.

Figure 16 shows the performance of the dhtPut operations on our DHT implementation. In

this experiment, the DHT was initialized to contain zero keys and the throughput was meas-

ured for fulfilling the DHT implementation with keys. The benchmark was executed 10

times and averages were taken. Similarly to Figure 15, throughput for different number of

nodes and different number of threads per node is presented. In the case of dhtPut operations,

the throughput is an order of magnitude slower than the case of dhtGet operations. This is at-

tributed to the fact that the algorithm that implements the dhtPut functionality is more com-

plex since it uses a few complex synchronization primitives, i.e. locks, etc. However, the ex-

periment clearly shows the system’s capability to increase its performance while increasing

the degree of parallelism.

Figure 16. Throughput of dhtPut operations with different numbers of nodes and threads per node.

Figure 17 and Figure 18 show the performance of our DHT implementation when threads

execute workloads that perform both dhtPut and dhtGet operations. In the experiment of Fig-

ure 17, the DHT was initialized to contain zero keys and the throughput was measured for

performing operations, where 80% of them are dhtPut and 20% are dhtGet. The bench-

mark was executed 10 times and averages were taken. It is shown that the throughput in-

creases with the number of nodes and/or threads per node in an almost linear manner. More

specifically, the maximum achieved throughput is about 200k operations per second, and it is

achieved by using 3 threads. By increasing the number of nodes that issue dhtGet operations,

the throughput increases almost linearly for more than two nodes.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 3 4 5 6 7 8

T
h

ro
u

gh
p

u
t

o
p

er
at

io
n

s/
se

c

nodes

1 Thread

2 Threads

3 Threads

Project No. 671578 ExaNoDe Deliverable D3.7 Page 19 of 33

Figure 17. Throughput of dhtPut and dhtGet operations (80% dhtPut and 20% dhtGet) with different

numbers of nodes and threads per node.

Similarly to Figure 17, Figure 18 shows that the throughput for performing operations

(50% dhtPut and 50% dhtGet). In this case throughput is lower than the case of Figure 17,

and it is attributed to the fact that the algorithm that implements the dhtPut functionality is

slower due to the synchronization overheads. However, the experiment clearly shows the sys-

tem’s capability to increase its performance while increasing the degree of parallelism an al-

most linear fashion.

Figure 18. Throughput of dhtPut and dhtGet operations (50% dhtPut and 50% dhtGet) with different

numbers of nodes and threads per node.

0

50000

100000

150000

200000

1 2 3 4 5 6 7 8

T
h

ro
u

gh
p

u
t

o
p

er
at

io
n

s/
se

c

nodes

1 Thread

2 Thread

3 Threads

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8

T
h

ro
u

gh
p

u
t

o
p

er
at

io
n

s/
se

c

nodes

1 Thread

2 Thread

3 Threads

Project No. 671578 ExaNoDe Deliverable D3.7 Page 20 of 33

2.5.4 The kram module

We now describe, the kram-module, which is the most basic tool for creating and using a

swap device. Whenever the module is loaded into the kernel (i.e. by using the functionality of

insmod), the user determines how many swap devices are needed and the size of each device.

The user should also determine the transfer mode, which is either a simple memcpy or a trans-

fer performed by the dma engine. An example command for loading the module to the kernel

is shown below.

> sudo insmod unimem_kram.ko ninstances=2 size=32,64 transfermode=1

The above operation loads the module, and asks for two swap instances of size 32MB and

64MB. Since the transfermode is set to 1, the dma engine will perform the transfer requests.

During its initialization phase, kram-module starts a high resolution timer, which is triggered

in every second, approximately. Whenever this timer is triggered, for any request for swap

space creation, the driver sends a message using mailbox to every remote node, checking for

remote memory availability. By sending that first message to some remote node, an inter-

communication starts between the driver and the daemon of the particular node. In case that

the driver has ensured that some of its neighbours has enough free memory and it is willing to

spare, the driver will create the appropriate block device for swapping.

2.5.5 The kram daemon

The purpose of the kram daemon is to monitor the memory availability of the local node and

to share efficiently this memory to remote nodes. The daemon uses a static array of structures,

where every element represents a chunk of memory. Whenever the kram driver of a remote

node requests some memory, the daemon searches for continuous chunks of memory that

meet the size requested. If the search was successful, the kram-module allocates the requested

memory. In the case where a driver uses some memory of the daemon’s node for swapping,

the daemon bookkeeps the information in the array.

The daemon keeps information of events in the log file:

/var/log/kram-daemon.log

2.5.6 Mailbox communication

Since the system has multiple boards, where everyone should be able to borrow and share

memory with each other, a communication protocol between them is mandatory. In this sec-

tion, we describe this communication protocol.

2.5.7 Message format

The mailbox driver allows one node to send a 64-bit message to any other remote node. The

first 4 most-significant bits are used as a message opcode. The 60 remaining bits are used as a

message payload. We now describe the payload format of each Mailbox message (Figure 19).

 Message identity (bits 0-3): These bits define the purpose of the message that was re-

ceived. The following values are valid:

o Driver message - 0x1 (in hex): The kram module requests memory to the dae-

mon.

o Driver message - 0x2 (in hex): The kram module confirms that it will allocate

requested memory from the daemon.

o Driver message - 0x4 (in hex): The kram module declines the memory alloca-

tion that was earlier requested by it.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 21 of 33

o Driver message - 0x8 (in hex): The kram module informs the daemon that it

will free the allocated memory.

o Daemon message - 0x1 (in hex): The kram daemon informs the driver that it

has free memory for allocation.

 Node id (bits 4-7): The id of the node that sends the message.

 Swap instance id (bits 8-11): The id of the swap instance that the driver wants to allo-

cate.

 Memory chunk id (bits 12-19): The index of the first chunk of memory involved.

 Number of chunks (bits 20-27): The number of chunks of memory involved.

Figure 19. Message format of the KRAM communication protocol.

2.5.8 Communication protocol

Whenever, a user requests some remote memory to be used as swap space, kram-module

sends a first message to the daemon, requesting remote memory by following the steps below:

1. The driver will request memory to the daemon by setting the least significant bit of the

message to 1. Along with the message id, it passes the node id, the swap id, and the

size of the requested portion of memory in MBs.

2. The daemon receives the message and searches for memory availability. In case that

there is not enough memory available, it simply ignores the message and it does not

reply. In case that a continuous chunk of memory is available, it sets the least signifi-

cant bit of the message to 1, indicating that there is enough memory. It also adds to the

message, its node id, the id of the swap instance received, and the index to the first

available chunk of memory.

3. In case that the driver receives a message from the daemon, it checks if the swap in-

stance id is already serviced:

a. If the instance is not serviced, the driver will send a message to confirm the al-

location. The confirmation is indicated by setting the first lowest significant bit

to 1.

b. If the instance is complete, the driver will send a message to decline the alloca-

tion by setting the second lowest significant bit to 1.

4. Afterwards, the driver adds its node id, and re-adds the chunk index, and size in MBs.

5. As a last step, when the driver no longer needs the swap device, it sends a message in-

forming the daemon to free the allocated memory. Freeing the allocated memory is in-

Project No. 671578 ExaNoDe Deliverable D3.7 Page 22 of 33

dicated by setting the third lowest significant bit to 1. The kram-module driver also

adds its node id to the message.

Figure 20 shows a simple schematic of the communication process.

Figure 20. The KRAM communication protocol.

2.6 Swap device management

The kram-module driver handles entirely the process for creating and removing the swap de-

vices. Some operations are executed during the module initiation, in order to improve per-

formance while the driver runs. The other operations are executed at runtime, since they re-

quire information communicated by the daemon. When the module is removed, the swap de-

vices are no longer required, therefore they are deleted.

2.6.1 Operations at module initiation

During their loading phase, the modules handle all initializations of daemons and allocations

of descriptors that do not require information from a remote daemon. That way the modules

can achieve higher performance at runtime, since it will perform the minimum required work.

A high resolution timer is used to give kram-module the ability to continuously check for in-

complete instances. The timer is set to launch approximately every a second.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 23 of 33

Using a workqueue is one of the most important aspects of kram-driver, since there is need for

performing memory allocations at runtime, thus creating block devices. Since workqueues do

not run in interrupt context, they are appropriate for this task. The module initiates a

workqueue and it adds works to the queue that are equal to the amount of swap instances that

are going to be created.

At runtime, the kram-module driver needs to add the physical addresses obtained by the dae-

mon, to page descriptors, which will be later passed to cdma when swapping is required. For

performance reasons, when the driver is running, it is more efficient to allocate the page de-

scriptors during the initiation.

2.6.2 Operations at runtime

While the module is operating, it will continuously communicate with the daemons from the

remote nodes, until all of its instances are complete. When the module receives a positive re-

sponse from a memory request to a daemon, it will initiate a series of actions to create the re-

quired swap instance.

One second after of the timer initiation, the timer function will run and check for incomplete

instances. When it finds an instance that needs to be created, it will send messages to daemons

requesting memory.

When a daemon sends a message to the module, the callback function which is registered to

the message opcode of the message received, will queue the work dependent to the instance

specified along with the physical address obtained by the daemon message. After that, the

work function will run, in a thread context, when the kernel decides. In the work function, the

physical address range will be assigned to the page descriptors. Furtherly, the daemon will

create a block request queue which is connected to a function that will handle the data trans-

fers. There are two functions, one that uses a simple memory copy and one that utilizes the

cdma. The function used depends on the transfermode parameter, specified at the module in-

sertion. The last step is to create the disk device. When creating a disk device, the module as-

signs to the responsible structure, the correct file operations, the major and minor numbers,

the request queue created above, a seemly name, and the capacity specified by the page de-

scriptors.

2.6.3 Operations at exit

Removing the driver suggests that the swap devices cease to be mandatory. Initially, utilities

like workqueues and the timer are deactivated. After that, for each instance, the disk device is

deleted, the request queue is cleaned up, and the block device tied to the disk devices is unreg-

istered.

2.7 Other use-cases for memory on remote nodes

In continuation of the work described in the D3.6 deliverable (i.e. from the 1st year of effort),

we have been maintaining the various systems software modules and services to reflect

changes in the underlying custom hardware blocks. This effort will continue with porting all

this functionality to the final testbed of the ExaNoDe project. We have also started work on a

unified framework for managing and utilizing remote memory, based on the infrastructure

that we have already developed for the swap-device use-case described earlier in this section.

This unified framework will combine support for swap space with NUMA-aware dynamic

memory allocation policies.

Furthermore, we have worked on the following functionality areas:

Project No. 671578 ExaNoDe Deliverable D3.7 Page 24 of 33

 RDMA and mailbox services: We have worked towards a more sophisticated support

for virtualization at the level of hardware resources such as RDMA engines and mail-

boxes, specifically considering alternatives for the hardware-software interfaces and

the necessary infrastructure for allowing user-space access to such resources with

minimal or even zero copies of data from user- to kernel-space.

 Sockets-over-RDMA: We have added support for kernel-space interception of socket-

related functionality, so that we can transparently support not only user-space applica-

tions and services but also kernel-space network-based services (such as network file-

systems). We currently support kernel-space socket initiation/teardown, blocking-

mode reads/writes to sockets, and polling for socket-related events (e.g. availability of

data to receive from a socket connection and readiness to accept new data to transmit),

as per the specifications of the epoll system call.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 25 of 33

3 KRAM: Remote SWAP Space

Memory-intensive applications suffer large performance loss when their working sets do not

fully fit in system’s memory (i.e. DRAM) due to paging-out. Yet, they cannot leverage oth-

erwise unused remote memory, which leads to large imbalance in memory utilizations across

a cluster. Existing proposals for memory disaggregation call for new architectures, new hard-

ware designs, and/or new programming models, making them not easily applicable.

In this section, we present the KRAM remote swap space. The KRAM device is a DMA-

enabled remote memory ram-disk. More specifically, it uses the (unused) memory of some

remote node in order to create a ram disk. Each node consists of a user-space daemon, which

is able to communicate with a kernel-space module of another node to accomplish the task.

For memory transfer to/from remote memory, the Xilinx Central DMA engine and/or memcpy

are used.

3.1 KRAM architecture

The main software components for KRAM in each of the system’s node are the following:

 A kernel-space module called kram-module that handles the creation of swap devices

for the operating system, and the allocation of remote memory from neighbouring

nodes.

 A user-space daemon called kram-daemon, which is responsible for monitoring kram

allocation request from remote nodes. This user-space daemon stores information

about the allocated memory of its system from other nodes.

The kram-module and kram-daemon software blocks use the communication primitives pro-

vided by the Mailbox hardware-block. More specifically, the Mailbox uses are the following:

 The kram-module:

o Discovers free memory through every neighbour.

o Confirms or Declines accepted daemon responses, after a request.

 The daemon:

o Is aware of whom handles its memory.

o Accepts or ignores memory requests.

3.2 Swap instance creation

When kram-module is loaded, it will try to create swap instances according to the parameters

given to it. After communicating with the daemons of its remote neighbour nodes, the module

initiates operations that create swap instances in the form of block devices. Those devices

point to the RAM of the remote nodes specified, so that when the local node runs out of

RAM, it will start swapping memory, using these block devices. For this operation, the kram

module:

 During the initialization of the module:

o Initializes a high resolution timer.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 26 of 33

o Creates a workqueue with additional works for every instance that needs to be

created.

o Pre-allocates the page descriptors that will hold the physical addresses of the

swap instances.

 At runtime for every swap instance:

o Assigns the physical addresses acquired from the daemons, to the page de-

scriptors.

o Creates a request queue to handle the transfers.

o Assigns values to Disk structure and creates the block device.

The KRAM architecture is briefly presented in Figure 21. This figure also presents an exam-

ple of memory request issued by node 0 to node 1.

Figure 21. KRAM architecture (node 0 requests memory from node 1).

3.3 KRAM dependencies

The kram and the kram-daemon have certain system dependencies in order to be initialized,

and function properly. Those dependencies are kernel modules that are loaded by initializing

the Unimem environment. More specifically:

 The dependencies of kram-module are:

o The cdma module for using the cdma engine to transfer data from/to the swap

device.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 27 of 33

o The driver for the Mailbox hardware block, for communicating with the dae-

mons from the other nodes.

o The eusrvmem module, which is necessary for accessing the addresses of re-

mote nodes.

 The dependencies of the kram-daemon are:

o The mailbox driver for communicating with the kram modules of the remote

nodes.

o The eusrvmem, as the mailbox is dependent on it.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 28 of 33

4 NUMA support in the operating system

In this section we report on our effort towards providing NUMA-awareness in the Linux ker-

nel for the Unimem memory architecture. This enables applications that use the standard lib-

NUMA API to use remote memory regions in our prototype. Our OS adaptations aim to sup-

port NUMA-aware Linux instances running on each of the coherence islands. This work re-

quires patches to the architecture-specific source files of the Linux tree, so that a Linux kernel

instance running on one of the coherence islands can be configured to recognize and utilize

remote memory regions offered by other coherence islands as NUMA nodes.

In a traditional SMP (Symmetric Multiprocessing) system, the machine has a single memory

controller. As a result, when multiple processes try to access memory in the same time, the

bus is overloaded. The quality of the services that the system provides drops and the impact is

noticeable in the run-time of the applications, since memory input and output already con-

sume a significant amount of cycles. In order to address this issue, modern multicore com-

puters deployed as servers use multiple memory controllers with each one of them controlling

a portion of the memory of a board. This technology is known as Non-Uniform Memory Ac-

cess (abr. NUMA). Non-uniform memory access means that it will take longer to access cer-

tain memory regions than others. Access to the local memory of a processor is much faster

than access to remote memory, but remote memory is still useful for memory bound applica-

tions. An important advantage of NUMA systems is scalability. As we already mentioned, for

a computer server, a big number of applications run at any time and as a result, the memory

bus is under heavy contention. For an application that its main performance constrain is

memory bandwidth, it may slow down 2-3 times when most of the memory accesses are re-

mote instead of local.

A working NUMA implementation was first made available in the Linux kernel mainline in

2002. Version 2.5 of the Linux kernel already contained basic NUMA support for the x86 ar-

chitecture (specifically, for the AMD Opteron processor family). Together with the NUMA

support in Linux kernel, a library called libnuma and a utility called numactl were developed

by the open-source community. NUMA support for the ARM processors only came much

later (starting in 2015) with the introduction of the Cavium ThunderX processor (48 cores,

running at 2.5 GHz, consisting of up two NUMA nodes per system).

In this section, we describe our effort towards NUMA support for the ExaNoDe testbed based

on the ARM Juno development boards (8). In this prototype, described in detail in deliverable

D5.1, system nodes are interconnected via high-speed serial links, which in turn are available

to each node via a FPGA connected to the node’s PCI-Express system interconnect.

4.1 Implementation concepts for NUMA support in the Linux kernel

The Linux kernel manages the policy for processes or specific memory mappings, and offers

the following system calls to user-space applications:

 mbind: select binding for the specified memory pages to nodes.

 set_mempolicy, get_mempolicy: set/get the default binding policy.

 migrate_pages: migrate all pages of a process on a given set of nodes to a different set

of nodes.

 move_pages: Move selected pages to a given node or request node information about

pages.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 29 of 33

Besides the system calls described above, Linux provides the libNUMA library (9) as a way to

issue these system calls in a more programmer-friendly and abstract manner.

NUMA policy is concerned with putting memory allocations on specific nodes to let pro-

grams access them as quickly as possible. The primary way to do this is to allocate memory

for a thread on its local node and keep the thread running there (node affinity). This gives the

best latency for memory and minimizes traffic over the global interconnect. However, the

scheduler in the operating system cannot always optimize purely for node affinity. The prob-

lem is that not using a CPU in the system would be even worse than a process using remote

memory and seeing higher memory latency. In cases where the memory performance is more

important than the utilization of system’s processing cores, the application or the system ad-

ministrator can override the default decisions of the operating system. This allows system to

be better optimized for specific workloads. Linux traditionally had system calls to bind

threads to specific processing cores (using the sched_set_affinity system call and schedutils).

The libNUMA library extends this, giving programs the ability to specify on which node

memory should be allocated. To make it easier for user space programs to optimize for

NUMA configurations, the libNUMA API also exposes topology information and allows user

specification of processor and memory resources to use.

The Linux kernel supports the following modes of allocating memory
3
:

 Interleaved: allocate memory (at page granularity) in an interleaved manner over a set

of nodes, i.e. successive allocation requests will reserve memory pages on different

nodes. If memory is exhausted at a node, then an automatic fall-back is applied to pro-

vide memory from another node.

 Bind: Memory is allocated on the node in the set with sufficient free memory that is

closest to the node where the allocation takes place.

 Preferred: The allocation is attempted from the single node specified in the allocation

policy. If that allocation fails, the kernel will search from other nodes, in order of in-

creasing distance from the preferred node. The distance information is made available

by the platform firmware.

A key concept in the Linux kernel for describing the memory architecture of a system is the

notion of distance between the node where a memory region is physically located and the

node where the actual use of the memory contents is needed. A system is characterized by its

memory topology (10), which essentially describes the distance between each processing core

and each of the available memory regions. A memory node is typically the set of memory re-

gions accessible via a specific memory controller. A NUMA system includes more than one

memory controller, which results in variations of distance between its processing cores and

each of the available memory nodes. A crucial part of our work has been to introduce these

notions of distance and topology for the 64-bit ARM architecture.

4.2 Implementing libNUMA infrastructure on ARM-based systems

Whenever an x86-based system is booting-up, the system firmware retrieves the NUMA con-

figuration of the system by using ACPI (Advanced Configuration & Power Interface) tables.

ACPI support for the ARM64 architecture is currently under development, and a significant

3 Source: Notes on Linux Memory Policy, available the Documentation/ directory of the Linux source-
tree: https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt

Project No. 671578 ExaNoDe Deliverable D3.7 Page 30 of 33

part of the ACPI specification is not supported yet. The essential information for describing a

NUMA topology is contained on the SLIT and SRAT tables:

 The ACPI Static Resource Affinity Table (SRAT) stores the topology information for

all the processors and memory.

 The ACPI System Locality Information Table (SLIT) describes the relative access

times between processors, memory subsystems, and I/O subsystems.

Therefore, we had to find a way to capture this essential information in our ARM-based test-

bed. ARM-based systems typically rely on the device-tree data structure for obtaining a ma-

chine-readable description of platform resources and properties at boot time. The Linux kernel

obtains this data structure by reading a binary file. For the purpose of identification, each

NUMA node is associated with a unique token (node ID). In order to describe the connec-

tivity and relative cost of communication between NUMA nodes, we introduced to the device

tree the distance matrix. This matrix is represented as a list of node pairs and their relative dis-

tance.

In the ExaNoDe testbed based on ARM Juno systems, the implementation of NUMA support

for PCI memory address space is contained within a Linux kernel module that manages the

mapping of the physical PCI memory address space to the virtual memory address space of

the process. This is achieved by using existing functionality of the Linux memory manage-

ment subsystem, i.e., remap_pfn_range function. Furthermore, this module is responsible for

managing the allocation policy for a specified PCI memory address space, as needed by the

API of libNUMA. Main features include the migration and movement of memory pages

to/from remote and local memory regions.

Our kernel module can also parse the appropriately formatted entries under the /proc pseudo-

filesystem for obtaining system configuration information. Specifically, via the /proc filesys-

tem we can describe remote memory regions that will become available for use via the lib-

NUMA API (at the current system node), and obtain a summary of the current memory node

topology (in particular, the available memory address regions).

4.3 Enablement of different service levels for libNUMA

We have implemented alternative memory allocation policies that take into account the user

and group identifiers of the process that is using the libNUMA API. By allowing the libNUMA

infrastructure in the kernel to identify processes that issue libNUMA API calls, we have cre-

ated a simple control for setting the ratio of remote vs. local memory pages allocated to each

process. This ratio significantly affects the user-observed performance of the calling proc-

esses, i.e. enabling the kernel to distinguish between different service levels. By exposing a

control for this crucial parameter, we are looking forward to future efforts towards the devel-

opment of dynamic memory allocation policies that would also consider other criteria for dis-

tinguishing among applications.

So far, we have implemented two policies:

 Allocation based on process group ID: Processes are distinguished by their process

group ID, which is interpreted as a credit score. Processes with a higher credit score

are given higher priority in reserving memory at their closest memory node (in terms

of the NUMA distance metric). The default policy for handling allocation requests is

that memory is allocated from the node that currently has the highest amount of avail-

able memory. In case of memory pressure, an allocation may fail to give priority to

conflicting allocation requests by processes with a higher credit score.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 31 of 33

 Allocation with potential for migration: Any process can obtain memory pages from

any of the available memory nodes. However, a later allocation request by a process

with a higher credit score may “evict” memory pages, i.e. trigger an automatic migra-

tion of memory pages to another, more distant memory nodes.

Table 2 lists the libNUMA API calls that we have implemented and validated on the ExaNoDe

testbed. API calls are grouped based on their functionality.

Functionality area

libNUMA API calls implemented on test-

bed built with ARM Juno development sys-

tems

Memory page allocation numa_alloc_onnode, numa_alloc_interleaved

Movement and migration of memory pages numa_move_pages, numa_migrate_pages

Memory policy numa_bitmask_alloc, numa_bitmask_setbit

Table 2. libNUMA API calls on ExaNoDe Testbed.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 32 of 33

5 Concluding remarks

In this deliverable, we have described the firmware and operating system support developed

at FORTH to support the Unimem architecture on the current-generation ExaNoDe multi-

board prototype. We presented our enhancements on the global shared address space (GSAS)

and its communication mechanisms on the Trenz prototype. Moreover, we presented in detail

the protection model applied on the GSAS environment. We described the implementation of

a key-value concurrent data structure on the GSAS environment. This key-value data structure

provides basic functionality for storing and retrieving pairs of keys and values and it is based

on the synchronization and remote access mechanisms provided by the GSAS environment.

We also presented the KRAM remote swap space, which is a DMA enabled remote memory

ram disk. The KRAM environment leverages the (unused) memory of remote nodes giving

the ability to augment the memory space of the local applications.

Starting from M6, FORTH is offering a remote access facility to the Juno multi-board proto-

type, via a web-based reservation system (implemented using the Apache Virtual Computing

Lab platform). The same web-based reservation system is also used for offering remote access

to the Trenz multi-board prototype.

Partners of ExaNoDe WP3 (namely: BSC, FHG, VOSYS and University of Manchester) have

been using the current ExaNoDe prototype via this remote access facility, working towards

adapting their respective run-time environments (OmpSs, OpenStream, GPI/GASPI) to match

the Unimem memory architecture.

For the next reporting period, we will work on providing the features and services described

in this document in the upcoming prototype of ExaNoDe, following the timeline of the Ex-

aNoDe DoA. Moreover, we will work towards the following enhancements:

 GSAS: We plan to enhance the performance of the GSAS environment. More specifi-

cally, we plan to improve the performance of atomic operations performed in a local

node. Furthermore, we plan to extend the API of the GSAS environment in order to

provide more advanced mechanisms for remote memory allocation.

 DHT over GSAS: We plan to better optimize the concurrent data structure used in the

DHT implementation in order to enhance its performance. We also plan to provide

new, more advanced mechanisms for storing and accessing data on the DHT imple-

mentation, and conduct a comprehensive performance evaluation.

 libNUMA support: We plan to port libNUMA support to the upcoming ExaNoDe test-

bed, and conduct a comprehensive performance evaluation. We expect this functional-

ity to be incorporated within a unified framework for managing and utilizing remote

memory.

Project No. 671578 ExaNoDe Deliverable D3.7 Page 33 of 33

6 References

1. The EUROSERVER project. European Exascale System Interconnect and Storage. GA-

610456. http://www.euroserver-project.eu.

2. The ExaNest project. European Exascale System Interconnect and Storage. GA-671553.

http://www.exanest.eu/.

3. EUROSERVER: Energy efficient node for European micro-servers. Y. Durand, P. M.

Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy, G. Gaydadjiev, J. Goodacre, M.

Katevenis, M. Marazakis, et al. Verona, Italy : IEEE, 2014. Euromicro Conference on Digital

System Design (DSD). pp. 206-213.

4. The SGI origin: A ccNUMA Highly Scalable Server. J. Lenosk, and D. Laudon. s.l. : ACM,

1997. ACM SIGARCH Computer Architecture News. pp. 241-251.

5. Trenz Development Platform Technical Reference Manual - TE0808-03. http://www.trenz-

electronic.de/fileadmin/docs/Trenz_Electronic/TE0808/REV03/Documents/TRM-TE0808-

03.pdf. May 2017.

6. Kallimanis, Nikolaos D., et al. Design of the ExaNoDe Firmware. Deliverable D3.6.

ExaNoDe: European Exascale Processor Memory Node Design.

7. Revisiting the combining synchronization technique. Fatourou, Panagiota and Kallimanis,

Nikolaos D. 2012. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP 2012). pp. 257-266.

8. Juno ARM Development Platform. http://www.arm.com/products/tools/development-

boards/versatile-express/juno-arm-development-platform.php.

9. A NUMA API for Linux. Technical Linux Whitepaper, Novell, available at

http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf. Kleen, Andy.

April 2005.

10. Lameter, Christoph. Numa (non-uniform memory access): An overview. ACM Queue .

2013, Vol. 11, 7.

