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Executive Summary 

In this deliverable, we describe the evolution of firmware and operating system support that 

we have developed to support the Unimem architecture on the current-generation ExaNoDe 

multiboard prototype. We focus on the extensions that we have designed and implemented in 

two major areas of functionality:  

(a) The global shared address space (abbr. GSAS environment) and its communication 

mechanisms. We describe the GSAS architecture in detail, while giving a brief overview of 

the hardware and software components that it is based on. We also provide a description of 

the hardware-software interface of the hardware components co-designed for use by the 

GSAS environment.  

(b) The use of remotely-accessible memory as a swap device, to augment the memory space 

available to applications executing on a Unimem compute-node. This is one of several use-

cases for remotely-accessible memory that we have explored. Other use-cases briefly de-

scribed in this deliverable include using memory from remote nodes via allocator modules, 

both in user-space and in kernel-space, remote memory.  

Finally, we describe our work towards adding NUMA (Non-Uniform Memory Access) sup-

port in the operating system. 
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1 Introduction 

The Unimem Architecture plays a central role in the ExaNoDe project, and also has been the 

basis for related projects, i.e., EUROSERVER (1) and ExaNeSt (2). The Unimem architecture 

consists of a powerful set of mechanisms that provide efficient communication among the re-

mote nodes of a large computational system. The main advantage of the Unimem architecture 

over conventional communication architectures (i.e., coherent shared memory systems and 

message passing computational systems), is that it offers more advanced communication 

mechanisms than the conventional message passing systems and eliminates the complexities, 

the performance overheads, and the costs that the large-scale coherent shared memory sys-

tems induce.  

The Unimem architecture is a technology that was first developed within the EUROSERVER 

project (1), (3). A computational system that implements the Unimem architecture consists of 

a set of computational nodes that are connected through a custom network. Each computa-

tional node consists of a set of processing cores, which communicate among each other using 

some coherent shared memory protocol provided by the hardware. Unimem enables the nodes 

to directly access areas of memory located in remote nodes. More specifically, in the Unimem 

architecture, there is a global address space (abr. GAS) that it is accessible to any node inside 

the computational system. The local physical memory of each node is mapped to a portion of 

the GAS. Therefore, any node in the system has the ability to directly access the physical 

memory of any other remote node through the GAS. In order to eliminate the complexity and 

the costs that the system-level coherence protocols induce (4), the Unimem architecture im-

poses that each page of the physical memory can be cached by at most one node (see Figure 1 

for such a use-case). In principle, the node that caches a page of memory can be the local 

node where this page is physically allocated or any other remote node. However, in practice, 

it is generally preferable that nodes do not cache remote memory pages. 

  

Figure 1. Overview of the Unimem architecture. 
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The most notable characteristics of the Unimem architecture are the following: 

1. Load and store instructions are allowed across remote nodes, to any address within the 

GAS. Thus, any node of the computational system is able to access any part of the 

memory of any remote node via conventional load and store instructions (see Fig-

ure 1). 

2. Every page of physical memory can only be declared cacheable in a single node at 

most, this node is called owner node. The owner node is usually the node whose local 

memory contains this page of memory, but it could also be any remote node that uses 

the page by borrowing memory from another node (see Figure 1). 

3. Unimem provides the ability of efficiently copying large amounts of memory from/to 

remote nodes. This is achieved by using the Remote Direct Memory Access (RDMA) 

block transfers. This is a communication mechanism supported by the hardware and 

enables efficient zero-copy transfers of large portions of data. The Unimem architec-

ture provides the ability that an RDMA block transfer can be initiated at user-level in a 

protected way, without paying the overhead of a system call. It thus drastically reduces 

the latency and the energy consumption of communication across remote nodes (see 

Figure 2). Significantly, this type of communication has the advantage that it is per-

formed by a separate, dedicated hardware (DMA) engine. This engine executes com-

munication primitives in parallel with the main processor performing other, overlap-

ping computations giving the main processor the ability to execute other, overlapping 

computations. 

4. Unimem also offers the mailbox hardware primitive, which gives processes that reside 

on remote nodes the ability to receive notifications. By using mailboxes, processes are 

able to send/receive synchronization mechanisms to/from processes that reside on re-

mote nodes. The hardware gives processes the ability to access the mailboxes via user-

level library calls in a protected way, without paying the overhead of a system call. 

 

 

Figure 2. Overview of an RDMA Operation. 

Thanks to these abilities, Unimem appears as an evolution of both shared memory and mes-

sage passing parallel architectures: 

 Shared Memory: Since all memory words within the entire GAS are accessible by 

any node using conventional load and store instructions, Unimem is a shared memory 
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system. However, we avoid the high cost of system-wide hardware cache coherence 

protocols, by requiring that every memory page can only be cached within a single 

node at most. Thus, all the other remote nodes may also enjoy consistent accesses to 

the data by employing un-cached, remote memory accesses. This kind of accesses is 

more expensive, since it is un-cacheable. However, this cost is acceptable provided 

that remote accesses are infrequent, which is Unimem’s response to the often made 

observation that “cache coherence is nice to have, provided you do not frequently 

use it”. 

 Message Passing: The Unimem architecture allows making bulk data transfers di-

rectly into the receiver’s memory, i.e., zero-copy RDMA. Thus, additional copies of 

the data induced by conventional message passing systems that do not support this 

feature are avoided. In this way, this type of data copying (i.e., RDMA) becomes the 

multi-word generalization of remote store instructions. Recall that this type of com-

munication is performed by a separate, dedicated hardware (DMA) engine, giving the 

main processor the ability to execute other, overlapping computations in parallel. 

Therefore, the system’s performance is enhanced in terms of time and energy. 

The Unimem architecture is already implemented in a system consisting of a few ARM-based 

micro-servers (i.e., nodes) designed and prototyped by the EUROSERVER (1). Each node is 

based on the Trenz ARM development platform (5), and it has the following key properties: 

 It consists of several processing cores (up to 4), which all of them consisting of a co-

herence island. Communication among the processing cores of a coherence island is 

performed through a coherent shared memory protocol provided by the hardware of 

the processor. Nodes are able to share I/O devices and accelerators that are attached to 

any other remote node resulting to better I/O performance and flexibility. 

 There is a partitioned global address space (abr. PGAS), consisting of the aggregation 

of the physical memory of multiple nodes (i.e., coherence islands), where each mem-

ory page has a single owner. Thus, each node owns a part of the PGAS and the whole 

of its local physical memory can be accessed by any remote node through the PGAS. 

A processor of any node can access any page of the PGAS, by issuing conventional 

load and store instructions, which are transparently routed by the hardware to the ap-

propriate node that the memory resides on. This is achieved by adding non-trivial ex-

tensions to the processor’s data-path that can only be implemented in an open plat-

form. 

 Since we aim to implement an extremely scalable computational system, we have to 

reduce or even eliminate the overheads that are related to coherency protocols. Thus, 

our system imposes the following important property: from the point of view of a 

processor, a memory page can be either at the cache of a remote node or at the cache 

of local node, but not at both. This is the basis of the Unimem consistency model, 

which eliminates the need of maintaining global-scope cache coherence protocols. 

 The Unimem consistency model (i.e., caching each memory page only among the 

nodes of a single coherence island) gives to application code the ability to be executed 

without the risk of data inconsistency. Furthermore, the consistency model of Unimem 

effectively pushes the application developers or runtime systems to place their compu-

tations close to data. In this manner, the locality of data is improved having as result 

the reduction of power consumption and the mitigation of performance bottlenecks in-

duced by the data movement. 

 The current version of the platform also provides, today, via Unimem: Remote Direct 

Memory Access (RDMA) and asynchronous interrupts to remote nodes, via mail-
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boxes. It is noticeable that the existing software consisting of either shared-memory or 

message-passing applications, can run on the platform with minimal or moderate 

modifications.  

 

Figure 3. The programming interfaces that the Unimem provides and their interactions. 
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2 Global Shared Address Space 

In this chapter, we describe the current generation of the GSAS environment and the provided 

mechanisms for inter-process communication across different nodes (i.e. Trenz prototype 

nodes). 

2.1 GSAS architecture overview 

Our global shared address space defines an application interface (i.e. API) that gives the abil-

ity to processes running across remote nodes to communicate in a way that resembles shared 

memory communication. More specifically, the GSAS environment allows the applications to 

allocate/de-allocate remote parts of the shared address space and to perform reads, writes and 

other atomic operations on the allocated space using the appropriate library calls. 

In the GSAS environment, all the read, write and atomic operations on the allocated address 

space are performed via special user-level library calls and not via conventional load and store 

instructions provided by the ARM processors. Since these calls are user-level and do not in-

volve operating system's kernel, they have a low-latency, fast communication mechanism. 

Note that in large scale systems, the main overhead of an atomic instruction to some remote 

memory location is mainly the network latency, i.e. the order of magnitude of network latency 

is microseconds, while the order of magnitude of a user-level library call is a few nanosec-

onds. Therefore, the overhead of a call to a user-level library is minimal. 

Although the communication mechanism of the GSAS environment is efficient, local memory 

accesses performed by the conventional ARM processor instructions are more efficient. Thus, 

the communication mechanisms provided by the GSAS environment should not be used in 

cases that do not involve communication among remote processes. 

 

Figure 4. A high-level overview of the architecture of the hardware prototype consisting of 4 nodes. 
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The current version of the prototype consists of a set of computing nodes (i.e., Trenz devel-

opment boards) that are connected through a custom interconnection network. Each of the 

computing nodes contains 4 ARM Cortex-A53 processing cores running at 1.2 GHz and is 

equipped with 2 GB of DDR4 RAM clocked at 600 MHz. Any of the processing cores is able 

to communicate with any other local and/or remote processing core via a custom network that 

is described in (3). Figure 4 presents a high-level overview of the system description. 

The main network mechanisms that are used by GSAS environment for communication 

among remote nodes are the virtualized mailbox and the virtualized packetizer. Each node of 

the system is equipped with a virtualized mailbox that contains 64 interfaces and a virtualized 

packetizer that also contains 64 interfaces. Thus, 64 threads per node are able to use the func-

tionality of the GSAS environment at each point in time. Each of these threads is able to send 

a network packet to the mailbox of any other remote or local thread using one allocated inter-

face of the local packetizer. Any thread is able to receive a network packet using one allocated 

interface of the local mailbox. A network packet contains the appropriate data describing the 

atomic operation that the sender thread wants to perform. The virtualization of the mailbox 

and packetizer hardware blocks enables system’s threads to use a private instance (or inter-

face) of them without having to take into account that other threads may access the same 

hardware blocks concurrently. Thus, any thread is able to directly use the functionality pro-

vided by the virtualized packetizer and mailbox hardware blocks without involving the kernel 

for sharing the hardware. The atomicity driver that runs on each system’s node is responsible 

for managing the virtualized packetizer and the virtualized mailbox interfaces of the node. 

Figure 5 shows a brief description of the hardware and software stack. 

 

Figure 5. The hardware and the software stack for the GSAS environment. 
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sends it (by using its allocated packetizer interface) to the mailbox of the responsible remote 

atomic service. The atomic service that receives the packet in its mailbox, applies the de-

scribed atomic operation to its local memory and responds to the issuer by sending to it a re-

sponse packet. 

The GSAS environment supports addresses of 64 bits. The address space consists of N =     

partitions (see Figure 6). Each of these partitions is of size     bytes and it is strongly related 

to at most one computing node. Thus, at most     compute nodes are supported. In case that 

the system is equipped with       compute nodes, only the first   parts of the address 

space are used. In this case, the address space of the GSAS environment is of size       

bytes. Therefore, the 16 most significant bits of an address contain all the appropriate routing 

information. Whenever a thread wants to apply an atomic operation on some address of the 

GSAS environment, it can extract the destination node from the address itself. 

The addressing policy of the global address space described above, leads us to allocate the 

first most significant 16 bits (out of the 64 bits) of an address for identifying which node this 

address belongs to. The remaining 48 bits are available to each node for internal addressing of 

all of its local memory. The address space that is handled by a node is partitioned in pages, 

where each page is of size 4096 bytes (or 1000 in Hex). For example, the virtual address 

0x0002-0000-0000-1001 (in Hex) points at the second word of the second virtual page of the 

second partition of the global address space. This address also states that the contained data 

are placed on the node of the system with id 1. 

  

 

Figure 6. An overview of the addressing system that the GSAS environment offers (Addresses in Hex). 
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2.2 Protection on GSAS environment 

In this Section, we present in detail the protection properties (see Section 2.2.1) that the 

GSAS environment imposes to the applications running on top of it. The implementation of 

the protection properties is discussed in Section 2.2.2. 

2.2.1 Protection properties 

We first describe the protection properties that are imposed to any multi-threaded application 

that runs on the GSAS environment. 

Since each thread on the GSAS environment allocates its own virtual mailbox and packetizer 

channel, we refer to threads and not processes in our model. Let   some thread that executes 

the binary code of some file  . Denote by     , the creation of a local or a remote thread 

   by thread  . Thread    could execute either the same binary of code   or any other binary 

code    . Denote by     , the tree of threads that   resides on. Let    be any thread of the 

tree of threads      . We say that    is the root node of tree      , if there is not exist some 

thread   such that            and       

Denote by    any sequence of     threads (let them be             ) such that    
            . We say that   is an ancestor of   , if there is a non-empty sequence 

   of k>  threads such that                 and     .  

Let   and    be any two threads that are running in the system. It holds that           , if 
there is a thread    such that    is an ancestor for both   and   . Therefore, both threads   

and    are members of the same tree of threads. 

Denote as        any allocated chunk of memory of some thread  . Denote by   
       , the ability of thread   to execute atomic operations on any memory chunk allo-

cated by thread   . Denote also by          , the inability of thread   to execute atomic 

operations on any memory chunk allocated by some thread    (i.e. process    terminates its 

execution abnormally if tries to execute an atomic operation in such memory chunk). 

Let   and    be two threads that run on the GSAS environment, the following invariants hold: 

i.         . 

ii. If           , then it holds that           and          . 

iii. If           , then it holds that           and          . 

Figure 7 and Figure 8 show a few examples of the protection properties (i.e., invariants i-iii) 

that are imposed to the applications running on the GSAS environment. Figure 7 illustrates a 

tree   of threads. Threads    to    (i.e. illustrated as blue nodes) execute the same binary file 

 , while threads    to    (i.e. illustrated as orange nodes) execute some other binary file 

   . Since all threads    to    are members of the tree  , any thread is able to access any 

other memory chunk allocated by some other thread of  . For example, Figure 7 shows that 

   is able to access any memory allocated by    and    without having to take into account 

the binary file that    and    execute. Moreover, Figure 7 shows that    is able to access any 

memory chunk allocated by   , without also having to take into account the binary that    

executes. 
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Figure 7. An example of an imaginary tree of remoteFork calls. Threads       are instantiated by exe-

cuting binary  , while threads       are instantiated by executing binary B. 

Figure 8 illustrates two trees of threads   and   . Threads    to    and     to     (i.e. illus-

trated as blue nodes) execute the same binary file  , while threads    to    (i.e. illustrated as 

orange nodes) execute some other binary file    . By invariants i-iii, it follows that all 

threads    to    are members of the tree  , any thread is able to access any other memory 

chunk allocated by some other thread of  . Furthermore, invariants i-iii imply that any of 

threads    to    is not able to access any chunk of memory allocated by threads   
  to   

 , ig-

noring the fact that both set of threads execute the same binary file. By invariants i-iii, it is 

also implied that threads   
  to     cannot access any chunk of memory allocated by any 

thread    to    of tree  . 

2.2.2 Implementation of protection in GSAS environment 

In the GSAS environment, there are two kinds of entities in terms of protection, i.e. the 

trusted entities and the untrusted entities. The trusted entities are the following: 

1. Hardware entities, i.e. Packetizer and Mailbox. 

2. The atomicity driver that handles the Packetizer and Mailbox hardware entities. 

3. The atomic service that runs on each system’s node 

The untrusted entities are the following: 

1. Any thread of a user-space application. 

2. The user-space library that handles the atomic requests on the issuer side. 

The key architectural design-point on the GSAS environment is that the trusted entities pro-

vide a restricted way for communication to the untrusted entities (i.e. the GSAS environment 

users). Moreover, only the trusted entities are able to set-up/modify the protection ids. This 

results in a protection scheme that guarantees that a thread using the functionality of the GSA 

environment cannot impersonate some other thread. This gives the ability on threads that run 

   

      

   

      

T 
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on top of the GSAS environment to be able to access the memory areas that are implied by the 

protection model described on Section 2.2.1. 

 

 

Figure 8. Thread P6 is not able to access the memory allocated by thread P6’. 

We now describe how the protection scheme of the GSAS environment is implemented. As 

already pointed out, each atomic operation issued by some thread is described by a network 

packet that is transmitted to the atomic service of the appropriate remote node (see Section 2.1 

for a more detailed description). All the packets that describe atomic operations consist of a 

header of 56 bits and a payload of 200 bits. The first field of the header is of size 24 bits and 

uniquely describes the sender of the packet (see Figure 9). This field consists of the interface 

id (each virtual interface of some has a unique id on the local board) and the board id (each 

board in the system has a unique id). The next field also consists of 24 bits and is the protec-

tion id of the thread. The protection id is a unique number that share all the processes of the 

same tree of threads (see Section 2.2.1 for a formal definition of the tree of threads). Every 

thread at its creation time is assigned a protection id that is equal to its thread id and therefore, 

it is unique. The payload is written by the user-space library that issues atomic operations. 

The role of the payload is to describe the destination, the arguments and the type of the atomic 

operation that will be applied. Since the user-space library that issues atomic operations could 

be sided over by an erroneous or malicious user application, it is not a trusted entity and thus, 

it is not allowed to write the first 56 bits that are important for the protection scheme of the 

GSAS environment. In contrast to packet’s payload, the header of the packet (the first 56 bits) 

is written only by the Packetizer hardware block. 

Each thread that is running on the GSAS environment allocates by requesting atomicity 

driver, a pair of virtual interfaces, one for the Mailbox and one for the Packetizer. The atomic-

ity driver is responsible for setting-up the thread id and the protection id to the allocated vir-

tual interface of the Packetizer. Whenever a thread allocates a pair of Packetizer and Mailbox 

hardware blocks, the atomicity driver set-ups the Packetizer hardware block in way that the 

Packetizer interface writes the thread and protection id of the thread on every packet that is 
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transmitted over the network. In case that this thread is the first thread of the application that 

allocates the pairs of Packetizer and Mailbox interfaces, its thread id and its protection id 

are the same (the case that this thread is spawned by some other thread is described in a later 

part of this section). Therefore, any thread (and also the atomic service) that receives a packet 

from some remote thread, it has the ability to safely identify the origin of the packet. Since the 

atomic service bookkeeps the owner (i.e. the protection id) for each allocated page, it is able 

to safely deny to respond on requests to memory issued by threads that are not allowed to.  

0                 24                 48           56              64                                                                 127 

Thread & 

Node ID 

Protection 

ID 
Reserved 

OP 

CODE 
Instruction Address 

Argument 1 Argument 2 

Figure 9. Description of the request packet of an atomic operation. 

Figure 10 shows a detailed description of the packet’s flow. More specifically, some thread on 

node   issues an atomic operation by transmitting a network packet for a memory location 

that resides on node  . Since only the payload of the transmitted packet is written by the is-

suer thread (an untrusted entity), the header that contains the information of thread and protec-

tion ids is written by the Packetizer hardware block. Thus, the receiving endpoint, which is 

the atomic service on node  , is able to safely identify the sender thread that resides on node 

 . In case that the issuer thread of node   tries to apply an atomic operation on some memory 

location that it is not allowed to on node  , the atomic service on node   rejects the packet 

describing this operation. 

For allowing two or more remote threads accessing the same chunks of memory, the GSAS 

environment provides special functionality to an application for spawning remotely threads, 

i.e. remoteFork operation (see (6) for a detailed description). 

 

Figure 10. The protection architecture of the GSAS environment. 

This functionality not only eases the creation of threads on remote nodes, but it also enables 

the use of the same protection id for threads that reside on different nodes. Whenever a thread 

wants to spawn a thread (or process) to some remote node, it calls remoteFork giving as ar-

guments the node id (i.e. in which node the process should be spawned on) and the path of the 

binary file that the remote thread should execute. remoteFork creates a packet that describes 

the spawn operation and it sends it to the atomic service of the remote node. Whenever, the 

atomic service of the remote node receives the packet that describes the spawn operation, it 

creates a new thread. The newly created thread initially owns a protection id that is equal to 

its own thread id (the standard behaviour of atomicity driver when a thread allocates a pair of 

packet describing 

atomic operation 

Node B Node A 

Packetizer Mailbox Packetizer Mailbox 
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Mailbox and Packetizer interfaces, is to assign a protection id to the thread equal to its id). Af-

terwards, the atomic service changes the protection id of this newly created thread to an id 

that is equal to the id of the thread that issued the spawn operation. Recall that the atomic ser-

vice extracts the id of the issuer thread from the header of the received packet. Thus, it can 

safely set the protection id of the newly created thread to match the protection id of the issuer 

thread. This gives the ability to one or more threads (i.e. thread that are in the same tree of 

threads) to access the same chunks of memory.  

2.2.3 Restrictions on protection 

In the current version of the GSAS environment, the following restrictions on the implemen-

tation protection scheme hold. 

 Let   be any tree of threads (see Section 2.2.1) and let    be its root thread. In the cur-

rent implementation of GSAS environment, invariants i-iii hold only if thread    waits 

for all of its descendant threads to finish their execution. Thus, for any application that 

wants to strictly follow the protection model of Section 2.2.1, the root thread of the 

tree of threads should wait (e.g. on a barrier, etc.) all the spawned threads to finish 

their execution. 

 At the current protection model, two threads that belong to different trees of threads 

are not able to communicate using the mechanism provided by the protection scheme 

of the GSAS environment. In future versions of the GSAS environment, we aim to 

provide some forms of communication of threads that belong to different trees of 

threads.  

2.3 Application interface extensions 

In this section, we provide a detailed description of the new functionality that the GSAS envi-

ronment offers to the user applications. In this version of the GSAS API (i.e., v1.1), we pro-

vide some new operations that are able to read or write shared memory variables in chunks of 

128 bits and/or 256 bits. By providing these new operations, a user application is able to ac-

cess larger chunks of remote memory areas (Read and Write operations of 128 or 256 bits) 

with a single atomic operation, resulting significant performance gains.  

 uint128_t READ128(uint64_t *addr): READ128 returns the current 128-bit value 

that is stored in address addr. In case that addr is an invalid pointer, application exits 

abnormally. 

 uint64_t READ256(uint64_t *addr, void *buffer): READ256 stores on local 

memory pointed by buffer, a vector of 256-bit values that are stored in address addr. 

In case that addr is an invalid pointer, application exits abnormally. 

 void WRITE128(uint64_t *addr, uint64_t val[2]): WRITE128 atomically writes a 

vector of two 64 bit words val in address addr. In case that addr is an invalid pointer, 

application exits abnormally. 

 

2.4 GSAS performance evaluation 

We evaluated the performance of GSAS environment in the Trenz prototype. The Trenz pro-

totype consists of 4 nodes (i.e. 4 Trenz boards), each being equipped with 4 A53 processing 

cores. The atomic service is pinned at core zero of each of the nodes. We used the gcc 4.9.2 

compiler. The operating system was Linux with kernel version 4.4.0. To prohibit the linux 
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scheduler from doing unnecessary kernel thread migrations, threads were pinned in all exper-

iments: the i-th thread was bound on core (i+1)-th core.  

For our experiments, we first consider a synthetic benchmark, called the Fetch&Add bench-

mark, which is similar to that presented in (7). In this benchmark, we measure the maximum 

number of atomic operations (i.e., Fetch&Add
1
 operations) could be executed on a single, re-

mote memory location. The Fetch&Add object is simple enough to exhibit the overheads of 

the GSAS environment induced by the consecutive execution of atomic operations on a sin-

gle, remote memory location issued by large number of threads. Each instance of the bench-

mark simulates     Fetch&Add operations, in total, with each of the n threads simulating 

      Fetch&Add operations out of the total Fetch&Add operations. For the measurement of 

the average throughput, each experiment is executed 10 times. The remote shared variable 

was allocated using the functionality of AllocSharedPage, and it was located on node with id 

equal to 1.  

Figure 11 shows the performance of the GSAS environment for different number of nodes 

and different number of threads per node. This benchmark shows that the best throughput is 

achieved, when the Fetch&Add operations are issued by the local node where the memory lo-

cation resides on. More specifically, the maximum achieved throughput is about 600k opera-

tions per second, and it is achieved by the use of either 2 or 3 threads. By increasing the num-

ber of nodes that issue Fetch&Add operations, the throughput gracefully drops at about 400k 

operations per second for the case of 4 nodes. 

 

Figure 11. Average throughput of a Fetch&Add operation on a single variable for different numbers of 

nodes and threads. 

In the next experiment, illustrated on Figure 12, we measure the throughput of Fetch&Add 

operations for different numbers of shared variables and not for a single remote location. 

More specifically,  -axis shows the number of the nodes that the experiment is performed, 

while the  -axis shows the achieved throughput. The remote variables are allocated evenly on 

                                                 

1 A Fetch&Add atomically adds some (positive or negative) value to some memory location and 
returns the previous value. 
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all system’s nodes and each thread randomly choses where to perform a Fetch&Add opera-

tion. This benchmark aims to present how the performance of the GSAS environment scales 

under load on many different remote locations. In the experiment of Table 1, we present the 

latency of an atomic operation (i.e. a Fetch&Add operation). More specifically, we ran a 

benchmark where a single thread running on node with id equal to 1 issued     Fetch&Add 

operations on a single, remote variable. This variable was allocated by using the 

AllocSharedPage functionality provided by the GSAS environment. We run 4 instances of the 

benchmark; in the first one, the remote variable was allocated on node 1 (i.e. local node), in 

the second one, the remote variable was allocated on node with id 2, etc. Again, for each of 

the configurations, the experiment was executed 10 times and average execution time was 

taken. We also repeated the above experiment by running the thread that issued the 

Fetch&Add operations on different nodes than 1. 

 

Figure 12. Average throughput of Fetch&Add operations on many different variables for different 

numbers of nodes and threads. 

 

From/to Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 

Node 1 2.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 

Node 2 4.6 2.6 4.6 4.6 4.6 4.6 4.6 4.6 

Node 3 4.6 4.6 2.6 4.6 4.6 4.6 4.6 4.6 

Node 4 4.6 4.6 4.6 2.6 4.6 4.6 4.6 4.6 

Node 5 4.6 4.6 4.6 4.6 2.6 4.6 4.6 4.6 

Node 6 4.6 4.6 4.6 4.6 4.6 2.6 4.6 4.6 

Node 7 4.6 4.6 4.6 4.6 4.6 4.6 2.6 4.6 

Node 8 4.6 4.6 4.6 4.6 4.6 4.6 4.6 2.6 

Table 1. Latency (in μsecs) of a Fetch&Add operation on some remote memory location. 
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Table 1 shows that the latency is minimal in cases that the thread that issues Fetch&Add op-

erations resides in the same node (i.e. local node) that the remote variable is allocated. In this 

case, the achieved latency is 2.6 μsec. In cases that the thread issues Fetch&Add operations 

on variables located on other than local node, the achieved latency increases to 4.6 μsec. Giv-

en that each atomic operation, either on the local node or on some remote node, consists of 

two network messages (i.e. one packet that describe the operation and one response packet, 

see (6) for more details), it follows that the central switch adds about 1 μsec one-way latency. 

We aim to reduce this latency significantly in the future implementation of our interconnect. 

 

2.5 A distributed in memory key-value store on GSAS environment 

In this section, we present a GSAS use case example, i.e., a Distributed Hash Table (abbr. 

DHT). A DHT is a concurrent data structure that enables applications to store pairs of 

            items. It also allows applications to retrieve a       associated with a given 

   . The presented DHT uses the communication mechanisms provided by the GSAS envi-

ronment resulting in a DHT implementation that is highly-scalable. 

2.5.1 Supported functionality 

We first provide a detailed description of the functionality supported by our DHT on top of 

GSAS environment. In the current version of the DHT application, two operations are sup-

ported for storing and retrieving data, i.e. dhtPut and dhtGet. Description for these two opera-

tions follows. 

 __uint64_t dhtPut(DHT *dht, uint64_t key, __uint128_t value): dhtPut inserts the 

pair of             in the concurrent hash-table. In case that there is already some 

other pair of values              , where         , the old pair of values is re-

placed by the new one. In case of success, zero is returned. Otherwise, an error code is 

returned. 

 __uint128_t dhtGet(DHT *dht, uint64_t key): dhtPut searches for a pair of values 
     , such that       and returns  . In case that such a pair does not exist, dhtGet 

returns  , which is an invalid value. 

2.5.2 DHT implementation 

The DHT concurrent data structure that we present in this deliverable consists of two level, 

i.e. the first and the second level of hashing. The first level of hashing consists of an array of 

               2 elements, each element of the first level array stores 256 bits of infor-

mation consisting either a <key, value> pair or a pointer to a container of the second level of 

hashing (see Figure 13). In an effort to enforce different requests to be served by memory are-

as that reside in different nodes, the array of first level hashing is stored across all the sys-

tem’s nodes. More specifically, the first                   elements reside on node 0, 

the second                   reside on system’s second node, etc. This and the use of a 

hash function that uniformly distributes keys on system’s nodes guarantee good load balance 

and high performance.  

A container of the second level of hashing consists also of array of elements similar to that of 

first level hashing, but its size is much smaller. For performance reasons, each container is of 

size 4096 bytes matching the page size and the whole container data reside at a single node. 

                                                 

2                 is initialized with a value that is big enough to map the whole system’s memory. 
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Given that each element of a container is of size 256 bits, 128 entries are available for storing 

            pairs. 

There are two different hash functions, one for each level of hashing. Denote by       the 

hash function of level-one of hashing and by       the hash function of level-two hashing, 

where            is a key.       returns a value                    , while 

      returns a value         . 

We first describe the dhtGet operations. Let     be any dhtGet operation executed by some 

thread   that requests the value of some key  . At first,     computes the level-one hash value 

       .   is just a pointer to some element of the first-level array. Afterwards, it atomical-

ly reads the  -th entry of the first level array by executing a READ256 operation (remind that 

each entry of the array of first-level hashing is of size 256 bits). Depending on the value of 

         and      fields, there are three cases. 

 In cast that      is equal to     , then     spins until the          field becomes 

equal to      . Whenever          becomes equal to      ,     follows the code-

path of one of two remaining cases depending on the value of the          field. 

 In case that the indirect field of the entry that was read is equal to false, this entry does 

not point to a second level container. In this case,   simply compares   with the con-

tents of the key field, and returns the value stored in the       field of the entry. Oth-

erwise,   returns   (i.e. invalid value). 

 In case          is equal to     , it follows that the entry of the first-level array of 

hashing points to a container of DHT nodes of the second-level of hashing. In this 

case,     calculates the hash value of the second-level of hashing, let it be    
     . Afterwards,     follows the pointer to the container and reads the    element 

of the container by executing a READ256 operation. In case that the key of this entry 

is equal to  ,     returns the value stored in the       field. Otherwise,     returns a 

value equal to  , which is an invalid value. 

 

Figure 13. Basic data structures for the DHT application. 

Each DHTNode structure consists of 5 fields (see Figure 14), i.e. a) the field that points out if 

the node is indirect or inner node, b) the field that is used as a lock, c) the field that stores a 
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version number of the node, d) the field for the key of the <key, value> pair, and e) the field 

that stores the value of the <key, value> pair. The key field is of size of 64 bits and the value 

field is of size of 128 bits. 

The role of the indirect/inner field is to show if a node of the first level of hashing is a simple 

entry of             pair or is a pointer to a container of the second level of hashing. When-

ever a dhtGet or dhtPut operation takes place, it checks if the node in the first level of hashing 

is indirect or not. In case that the node is direct, it checks the key of the direct node and re-

turns. Otherwise, the dhtGet or dhtPut operation reads key which is actually in this case a 

pointer, and starts searching to a container of the 2
nd

 level of hashing pointed by this key. The 

version field of the DHTNode records the version of the node; at each node update, the ver-

sion number is increased by one. 

0                 16                 32                             64                                                                 127 

indirect lock version key or pointer in case of indirection 

Value 

Figure 14. Description of the structure of a DHTNode. 

2.5.3 DHT performance evaluation 

We evaluated the performance of the DHT implementation on the Trenz prototype in a setup 

very similar to that presented in Section 2.4. In the experiment of Figure 15, we measured the 

performance of the dhtGet operations of our DHT implementation. Specifically, we measured 

the average throughput of dhtGet operations for different numbers of nodes and different 

numbers of threads per node. DHT implementation was initialized to contain     different 

keys by using the dhtPut functionality. Similarly to the experiments for the GSAS environ-

ment (Section 2.4), the benchmark was executed 10 times and averages were taken. Figure 15 

shows that the throughput of dhtGet operations increases with the number of nodes and/or 

threads per node.  

 

Figure 15. Throughput of dhtGet operations with different numbers of nodes and threads per node. 
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More specifically, the maximum achieved throughput is more than 700k operations per sec-

ond, and it is achieved by the use of 3 threads. By increasing the number of nodes that issue 

dhtGet operations, the throughput increases almost linearly for more than two nodes. This 

shows the system’s capability to increase its performance while increasing the degree of par-

allelism. 

Figure 16 shows the performance of the dhtPut operations on our DHT implementation. In 

this experiment, the DHT was initialized to contain zero keys and the throughput was meas-

ured for fulfilling the DHT implementation with     keys. The benchmark was executed 10 

times and averages were taken. Similarly to Figure 15, throughput for different number of 

nodes and different number of threads per node is presented. In the case of dhtPut operations, 

the throughput is an order of magnitude slower than the case of dhtGet operations. This is at-

tributed to the fact that the algorithm that implements the dhtPut functionality is more com-

plex since it uses a few complex synchronization primitives, i.e. locks, etc. However, the ex-

periment clearly shows the system’s capability to increase its performance while increasing 

the degree of parallelism. 

 

Figure 16. Throughput of dhtPut operations with different numbers of nodes and threads per node. 

Figure 17 and Figure 18 show the performance of our DHT implementation when threads 

execute workloads that perform both dhtPut and dhtGet operations. In the experiment of Fig-

ure 17, the DHT was initialized to contain zero keys and the throughput was measured for 

performing     operations, where 80% of them are dhtPut and 20% are dhtGet. The bench-

mark was executed 10 times and averages were taken. It is shown that the throughput in-

creases with the number of nodes and/or threads per node in an almost linear manner. More 

specifically, the maximum achieved throughput is about 200k operations per second, and it is 

achieved by using 3 threads. By increasing the number of nodes that issue dhtGet operations, 

the throughput increases almost linearly for more than two nodes.  
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Figure 17. Throughput of dhtPut and dhtGet operations (80% dhtPut and 20% dhtGet) with different 

numbers of nodes and threads per node. 

Similarly to Figure 17, Figure 18 shows that the throughput for performing     operations 

(50% dhtPut and 50% dhtGet). In this case throughput is lower than the case of Figure 17, 

and it is attributed to the fact that the algorithm that implements the dhtPut functionality is 

slower due to the synchronization overheads. However, the experiment clearly shows the sys-

tem’s capability to increase its performance while increasing the degree of parallelism an al-

most linear fashion. 

 

Figure 18. Throughput of dhtPut and dhtGet operations (50% dhtPut and 50% dhtGet) with different 

numbers of nodes and threads per node. 
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2.5.4 The kram module 

We now describe, the kram-module, which is the most basic tool for creating and using a 

swap device. Whenever the module is loaded into the kernel (i.e. by using the functionality of 

insmod), the user determines how many swap devices are needed and the size of each device. 

The user should also determine the transfer mode, which is either a simple memcpy or a trans-

fer performed by the dma engine. An example command for loading the module to the kernel 

is shown below. 

> sudo insmod unimem_kram.ko ninstances=2 size=32,64 transfermode=1 

The above operation loads the module, and asks for two swap instances of size 32MB and 

64MB. Since the transfermode is set to 1, the dma engine will perform the transfer requests. 

During its initialization phase, kram-module starts a high resolution timer, which is triggered 

in every second, approximately. Whenever this timer is triggered, for any request for swap 

space creation, the driver sends a message using mailbox to every remote node, checking for 

remote memory availability. By sending that first message to some remote node, an inter-

communication starts between the driver and the daemon of the particular node. In case that 

the driver has ensured that some of its neighbours has enough free memory and it is willing to 

spare, the driver will create the appropriate block device for swapping. 

2.5.5 The kram daemon 

The purpose of the kram daemon is to monitor the memory availability of the local node and 

to share efficiently this memory to remote nodes. The daemon uses a static array of structures, 

where every element represents a chunk of memory. Whenever the kram driver of a remote 

node requests some memory, the daemon searches for continuous chunks of memory that 

meet the size requested. If the search was successful, the kram-module allocates the requested 

memory. In the case where a driver uses some memory of the daemon’s node for swapping, 

the daemon bookkeeps the information in the array. 

The daemon keeps information of events in the log file: 

/var/log/kram-daemon.log 

2.5.6 Mailbox communication 

Since the system has multiple boards, where everyone should be able to borrow and share 

memory with each other, a communication protocol between them is mandatory. In this sec-

tion, we describe this communication protocol. 

2.5.7 Message format 

The mailbox driver allows one node to send a 64-bit message to any other remote node. The 

first 4 most-significant bits are used as a message opcode. The 60 remaining bits are used as a 

message payload. We now describe the payload format of each Mailbox message (Figure 19). 

 Message identity (bits 0-3): These bits define the purpose of the message that was re-

ceived. The following values are valid: 

o Driver message - 0x1 (in hex): The kram module requests memory to the dae-

mon. 

o Driver message - 0x2 (in hex): The kram module confirms that it will allocate 

requested memory from the daemon. 

o Driver message - 0x4 (in hex): The kram module declines the memory alloca-

tion that was earlier requested by it. 
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o Driver message - 0x8 (in hex): The kram module informs the daemon that it 

will free the allocated memory. 

o Daemon message - 0x1 (in hex): The kram daemon informs the driver that it 

has free memory for allocation. 

 Node id (bits 4-7): The id of the node that sends the message. 

 Swap instance id (bits 8-11): The id of the swap instance that the driver wants to allo-

cate. 

 Memory chunk id (bits 12-19): The index of the first chunk of memory involved. 

 Number of chunks (bits 20-27): The number of chunks of memory involved. 

 

Figure 19. Message format of the KRAM communication protocol. 

2.5.8 Communication protocol 

Whenever, a user requests some remote memory to be used as swap space, kram-module 

sends a first message to the daemon, requesting remote memory by following the steps below: 

1. The driver will request memory to the daemon by setting the least significant bit of the 

message to 1. Along with the message id, it passes the node id, the swap id, and the 

size of the requested portion of memory in MBs. 

2. The daemon receives the message and searches for memory availability. In case that 

there is not enough memory available, it simply ignores the message and it does not 

reply. In case that a continuous chunk of memory is available, it sets the least signifi-

cant bit of the message to 1, indicating that there is enough memory. It also adds to the 

message, its node id, the id of the swap instance received, and the index to the first 

available chunk of memory. 

3. In case that the driver receives a message from the daemon, it checks if the swap in-

stance id is already serviced: 

a. If the instance is not serviced, the driver will send a message to confirm the al-

location. The confirmation is indicated by setting the first lowest significant bit 

to 1. 

b. If the instance is complete, the driver will send a message to decline the alloca-

tion by setting the second lowest significant bit to 1. 

4. Afterwards, the driver adds its node id, and re-adds the chunk index, and size in MBs. 

5. As a last step, when the driver no longer needs the swap device, it sends a message in-

forming the daemon to free the allocated memory. Freeing the allocated memory is in-
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dicated by setting the third lowest significant bit to 1. The kram-module driver also 

adds its node id to the message. 

Figure 20 shows a simple schematic of the communication process. 

 

Figure 20. The KRAM communication protocol. 

 

2.6 Swap device management 

The kram-module driver handles entirely the process for creating and removing the swap de-

vices. Some operations are executed during the module initiation, in order to improve per-

formance while the driver runs. The other operations are executed at runtime, since they re-

quire information communicated by the daemon. When the module is removed, the swap de-

vices are no longer required, therefore they are deleted. 

 

2.6.1 Operations at module initiation 

During their loading phase, the modules handle all initializations of daemons and allocations 

of descriptors that do not require information from a remote daemon. That way the modules 

can achieve higher performance at runtime, since it will perform the minimum required work. 

A high resolution timer is used to give kram-module the ability to continuously check for in-

complete instances. The timer is set to launch approximately every a second. 
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Using a workqueue is one of the most important aspects of kram-driver, since there is need for 

performing memory allocations at runtime, thus creating block devices. Since workqueues do 

not run in interrupt context, they are appropriate for this task. The module initiates a 

workqueue and it adds works to the queue that are equal to the amount of swap instances that 

are going to be created. 

At runtime, the kram-module driver needs to add the physical addresses obtained by the dae-

mon, to page descriptors, which will be later passed to cdma when swapping is required. For 

performance reasons, when the driver is running, it is more efficient to allocate the page de-

scriptors during the initiation. 

2.6.2 Operations at runtime 

While the module is operating, it will continuously communicate with the daemons from the 

remote nodes, until all of its instances are complete. When the module receives a positive re-

sponse from a memory request to a daemon, it will initiate a series of actions to create the re-

quired swap instance. 

One second after of the timer initiation, the timer function will run and check for incomplete 

instances. When it finds an instance that needs to be created, it will send messages to daemons 

requesting memory. 

When a daemon sends a message to the module, the callback function which is registered to 

the message opcode of the message received, will queue the work dependent to the instance 

specified along with the physical address obtained by the daemon message. After that, the 

work function will run, in a thread context, when the kernel decides. In the work function, the 

physical address range will be assigned to the page descriptors. Furtherly, the daemon will 

create a block request queue which is connected to a function that will handle the data trans-

fers. There are two functions, one that uses a simple memory copy and one that utilizes the 

cdma. The function used depends on the transfermode parameter, specified at the module in-

sertion. The last step is to create the disk device. When creating a disk device, the module as-

signs to the responsible structure, the correct file operations, the major and minor numbers, 

the request queue created above, a seemly name, and the capacity specified by the page de-

scriptors. 

2.6.3 Operations at exit 

Removing the driver suggests that the swap devices cease to be mandatory. Initially, utilities 

like workqueues and the timer are deactivated. After that, for each instance, the disk device is 

deleted, the request queue is cleaned up, and the block device tied to the disk devices is unreg-

istered. 

 

2.7 Other use-cases for memory on remote nodes 

In continuation of the work described in the D3.6 deliverable (i.e. from the 1st year of effort), 

we have been maintaining the various systems software modules and services to reflect 

changes in the underlying custom hardware blocks. This effort will continue with porting all 

this functionality to the final testbed of the ExaNoDe project. We have also started work on a 

unified framework for managing and utilizing remote memory, based on the infrastructure 

that we have already developed for the swap-device use-case described earlier in this section. 

This unified framework will combine support for swap space with NUMA-aware dynamic 

memory allocation policies.  

Furthermore, we have worked on the following functionality areas: 
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 RDMA and mailbox services: We have worked towards a more sophisticated support 

for virtualization at the level of hardware resources such as RDMA engines and mail-

boxes, specifically considering alternatives for the hardware-software interfaces and 

the necessary infrastructure for allowing user-space access to such resources with 

minimal or even zero copies of data from user- to kernel-space. 

 Sockets-over-RDMA: We have added support for kernel-space interception of socket-

related functionality, so that we can transparently support not only user-space applica-

tions and services but also kernel-space network-based services (such as network file-

systems). We currently support kernel-space socket initiation/teardown, blocking-

mode reads/writes to sockets, and polling for socket-related events (e.g. availability of 

data to receive from a socket connection and readiness to accept new data to transmit), 

as per the specifications of the epoll system call. 
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3 KRAM: Remote SWAP Space 

Memory-intensive applications suffer large performance loss when their working sets do not 

fully fit in system’s memory (i.e. DRAM) due to paging-out. Yet, they cannot leverage oth-

erwise unused remote memory, which leads to large imbalance in memory utilizations across 

a cluster. Existing proposals for memory disaggregation call for new architectures, new hard-

ware designs, and/or new programming models, making them not easily applicable. 

In this section, we present the KRAM remote swap space. The KRAM device is a DMA-

enabled remote memory ram-disk. More specifically, it uses the (unused) memory of some 

remote node in order to create a ram disk. Each node consists of a user-space daemon, which 

is able to communicate with a kernel-space module of another node to accomplish the task. 

For memory transfer to/from remote memory, the Xilinx Central DMA engine and/or memcpy 

are used. 

 

3.1 KRAM architecture 

The main software components for KRAM in each of the system’s node are the following: 

 A kernel-space module called kram-module that handles the creation of swap devices 

for the operating system, and the allocation of remote memory from neighbouring 

nodes. 

 A user-space daemon called kram-daemon, which is responsible for monitoring kram 

allocation request from remote nodes. This user-space daemon stores information 

about the allocated memory of its system from other nodes. 

The kram-module and kram-daemon software blocks use the communication primitives pro-

vided by the Mailbox hardware-block. More specifically, the Mailbox uses are the following: 

 The kram-module: 

o Discovers free memory through every neighbour. 

o Confirms or Declines accepted daemon responses, after a request. 

 The daemon: 

o Is aware of whom handles its memory. 

o Accepts or ignores memory requests. 

 

3.2 Swap instance creation 

When kram-module is loaded, it will try to create swap instances according to the parameters 

given to it. After communicating with the daemons of its remote neighbour nodes, the module 

initiates operations that create swap instances in the form of block devices. Those devices 

point to the RAM of the remote nodes specified, so that when the local node runs out of 

RAM, it will start swapping memory, using these block devices. For this operation, the kram 

module: 

 During the initialization of the module: 

o Initializes a high resolution timer. 
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o Creates a workqueue with additional works for every instance that needs to be 

created. 

o Pre-allocates the page descriptors that will hold the physical addresses of the 

swap instances. 

 At runtime for every swap instance: 

o Assigns the physical addresses acquired from the daemons, to the page de-

scriptors. 

o Creates a request queue to handle the transfers. 

o Assigns values to Disk structure and creates the block device. 

The KRAM architecture is briefly presented in Figure 21. This figure also presents an exam-

ple of memory request issued by node 0 to node 1.  

 

Figure 21. KRAM architecture (node 0 requests memory from node 1). 

 

3.3 KRAM dependencies 

The kram and the kram-daemon have certain system dependencies in order to be initialized, 

and function properly. Those dependencies are kernel modules that are loaded by initializing 

the Unimem environment. More specifically: 

 The dependencies of kram-module are: 

o The cdma module for using the cdma engine to transfer data from/to the swap 

device. 
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o The driver for the Mailbox hardware block, for communicating with the dae-

mons from the other nodes. 

o The eusrvmem module, which is necessary for accessing the addresses of re-

mote nodes. 

 The dependencies of the kram-daemon are: 

o The mailbox driver for communicating with the kram modules of the remote 

nodes. 

o The eusrvmem, as the mailbox is dependent on it. 
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4 NUMA support in the operating system 

In this section we report on our effort towards providing NUMA-awareness in the Linux ker-

nel for the Unimem memory architecture. This enables applications that use the standard lib-

NUMA API to use remote memory regions in our prototype. Our OS adaptations aim to sup-

port NUMA-aware Linux instances running on each of the coherence islands. This work re-

quires patches to the architecture-specific source files of the Linux tree, so that a Linux kernel 

instance running on one of the coherence islands can be configured to recognize and utilize 

remote memory regions offered by other coherence islands as NUMA nodes.  

In a traditional SMP (Symmetric Multiprocessing) system, the machine has a single memory 

controller. As a result, when multiple processes try to access memory in the same time, the 

bus is overloaded. The quality of the services that the system provides drops and the impact is 

noticeable in the run-time of the applications, since memory input and output already con-

sume a significant amount of cycles. In order to address this issue, modern multicore com-

puters deployed as servers use multiple memory controllers with each one of them controlling 

a portion of the memory of a board. This technology is known as Non-Uniform Memory Ac-

cess (abr. NUMA). Non-uniform memory access means that it will take longer to access cer-

tain memory regions than others. Access to the local memory of a processor is much faster 

than access to remote memory, but remote memory is still useful for memory bound applica-

tions. An important advantage of NUMA systems is scalability. As we already mentioned, for 

a computer server, a big number of applications run at any time and as a result, the memory 

bus is under heavy contention. For an application that its main performance constrain is 

memory bandwidth, it may slow down 2-3 times when most of the memory accesses are re-

mote instead of local. 

A working NUMA implementation was first made available in the Linux kernel mainline in 

2002. Version 2.5 of the Linux kernel already contained basic NUMA support for the x86 ar-

chitecture (specifically, for the AMD Opteron processor family). Together with the NUMA 

support in Linux kernel, a library called libnuma and a utility called numactl were developed 

by the open-source community. NUMA support for the ARM processors only came much 

later (starting in 2015) with the introduction of the Cavium ThunderX processor (48 cores, 

running at 2.5 GHz, consisting of up two NUMA nodes per system).  

In this section, we describe our effort towards NUMA support for the ExaNoDe testbed based 

on the ARM Juno development boards (8). In this prototype, described in detail in deliverable 

D5.1, system nodes are interconnected via high-speed serial links, which in turn are available 

to each node via a FPGA connected to the node’s PCI-Express system interconnect. 

 

4.1 Implementation concepts for NUMA support in the Linux kernel 

The Linux kernel manages the policy for processes or specific memory mappings, and offers 

the following system calls to user-space applications: 

 mbind: select binding for the specified memory pages to nodes. 

 set_mempolicy, get_mempolicy: set/get the default binding policy. 

 migrate_pages: migrate all pages of a process on a given set of nodes to a different set 

of nodes. 

 move_pages: Move selected pages to a given node or request node information about 

pages. 
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Besides the system calls described above, Linux provides the libNUMA library (9) as a way to 

issue these system calls in a more programmer-friendly and abstract manner. 

NUMA policy is concerned with putting memory allocations on specific nodes to let pro-

grams access them as quickly as possible. The primary way to do this is to allocate memory 

for a thread on its local node and keep the thread running there (node affinity). This gives the 

best latency for memory and minimizes traffic over the global interconnect. However, the 

scheduler in the operating system cannot always optimize purely for node affinity. The prob-

lem is that not using a CPU in the system would be even worse than a process using remote 

memory and seeing higher memory latency. In cases where the memory performance is more 

important than the utilization of system’s processing cores, the application or the system ad-

ministrator can override the default decisions of the operating system. This allows system to 

be better optimized for specific workloads. Linux traditionally had system calls to bind 

threads to specific processing cores (using the sched_set_affinity system call and schedutils). 

The libNUMA library extends this, giving programs the ability to specify on which node 

memory should be allocated. To make it easier for user space programs to optimize for 

NUMA configurations, the libNUMA API also exposes topology information and allows user 

specification of processor and memory resources to use.  

The Linux kernel supports the following modes of allocating memory
3
: 

 Interleaved: allocate memory (at page granularity) in an interleaved manner over a set 

of nodes, i.e. successive allocation requests will reserve memory pages on different 

nodes. If memory is exhausted at a node, then an automatic fall-back is applied to pro-

vide memory from another node. 

 Bind: Memory is allocated on the node in the set with sufficient free memory that is 

closest to the node where the allocation takes place.  

 Preferred: The allocation is attempted from the single node specified in the allocation 

policy. If that allocation fails, the kernel will search from other nodes, in order of in-

creasing distance from the preferred node. The distance information is made available 

by the platform firmware. 

 

A key concept in the Linux kernel for describing the memory architecture of a system is the 

notion of distance between the node where a memory region is physically located and the 

node where the actual use of the memory contents is needed. A system is characterized by its 

memory topology (10), which essentially describes the distance between each processing core 

and each of the available memory regions. A memory node is typically the set of memory re-

gions accessible via a specific memory controller. A NUMA system includes more than one 

memory controller, which results in variations of distance between its processing cores and 

each of the available memory nodes. A crucial part of our work has been to introduce these 

notions of distance and topology for the 64-bit ARM architecture.  

 

4.2 Implementing libNUMA infrastructure on ARM-based systems 

Whenever an x86-based system is booting-up, the system firmware retrieves the NUMA con-

figuration of the system by using ACPI (Advanced Configuration & Power Interface) tables. 

ACPI support for the ARM64 architecture is currently under development, and a significant 

                                                 

3 Source: Notes on Linux Memory Policy, available the Documentation/ directory of the Linux source-
tree: https://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt 
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part of the ACPI specification is not supported yet. The essential information for describing a 

NUMA topology is contained on the SLIT and SRAT tables: 

 The ACPI Static Resource Affinity Table (SRAT) stores the topology information for 

all the processors and memory. 

 The ACPI System Locality Information Table (SLIT) describes the relative access 

times between processors, memory subsystems, and I/O subsystems. 

Therefore, we had to find a way to capture this essential information in our ARM-based test-

bed. ARM-based systems typically rely on the device-tree data structure for obtaining a ma-

chine-readable description of platform resources and properties at boot time. The Linux kernel 

obtains this data structure by reading a binary file. For the purpose of identification, each 

NUMA node is associated with a unique token (node ID). In order to describe the connec-

tivity and relative cost of communication between NUMA nodes, we introduced to the device 

tree the distance matrix. This matrix is represented as a list of node pairs and their relative dis-

tance. 

In the ExaNoDe testbed based on ARM Juno systems, the implementation of NUMA support 

for PCI memory address space is contained within a Linux kernel module that manages the 

mapping of the physical PCI memory address space to the virtual memory address space of 

the process. This is achieved by using existing functionality of the Linux memory manage-

ment subsystem, i.e., remap_pfn_range function. Furthermore, this module is responsible for 

managing the allocation policy for a specified PCI memory address space, as needed by the 

API of libNUMA. Main features include the migration and movement of memory pages 

to/from remote and local memory regions. 

Our kernel module can also parse the appropriately formatted entries under the /proc pseudo-

filesystem for obtaining system configuration information. Specifically, via the /proc filesys-

tem we can describe remote memory regions that will become available for use via the lib-

NUMA API (at the current system node), and obtain a summary of the current memory node 

topology (in particular, the available memory address regions). 

 

4.3 Enablement of different service levels for libNUMA 

We have implemented alternative memory allocation policies that take into account the user 

and group identifiers of the process that is using the libNUMA API. By allowing the libNUMA 

infrastructure in the kernel to identify processes that issue libNUMA API calls, we have cre-

ated a simple control for setting the ratio of remote vs. local memory pages allocated to each 

process. This ratio significantly affects the user-observed performance of the calling proc-

esses, i.e. enabling the kernel to distinguish between different service levels. By exposing a 

control for this crucial parameter, we are looking forward to future efforts towards the devel-

opment of dynamic memory allocation policies that would also consider other criteria for dis-

tinguishing among applications. 

So far, we have implemented two policies: 

 Allocation based on process group ID: Processes are distinguished by their process 

group ID, which is interpreted as a credit score. Processes with a higher credit score 

are given higher priority in reserving memory at their closest memory node (in terms 

of the NUMA distance metric). The default policy for handling allocation requests is 

that memory is allocated from the node that currently has the highest amount of avail-

able memory. In case of memory pressure, an allocation may fail to give priority to 

conflicting allocation requests by processes with a higher credit score. 
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 Allocation with potential for migration: Any process can obtain memory pages from 

any of the available memory nodes. However, a later allocation request by a process 

with a higher credit score may “evict” memory pages, i.e. trigger an automatic migra-

tion of memory pages to another, more distant memory nodes. 

Table 2 lists the libNUMA API calls that we have implemented and validated on the ExaNoDe 

testbed. API calls are grouped based on their functionality.  

 

Functionality area 

libNUMA API calls implemented on test-

bed built with ARM Juno development sys-

tems 

Memory page allocation numa_alloc_onnode, numa_alloc_interleaved 

Movement and migration of memory pages numa_move_pages, numa_migrate_pages 

Memory policy numa_bitmask_alloc, numa_bitmask_setbit 

Table 2. libNUMA API calls on ExaNoDe Testbed. 
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5 Concluding remarks 

In this deliverable, we have described the firmware and operating system support developed 

at FORTH to support the Unimem architecture on the current-generation ExaNoDe multi-

board prototype. We presented our enhancements on the global shared address space (GSAS) 

and its communication mechanisms on the Trenz prototype. Moreover, we presented in detail 

the protection model applied on the GSAS environment. We described the implementation of 

a key-value concurrent data structure on the GSAS environment. This key-value data structure 

provides basic functionality for storing and retrieving pairs of keys and values and it is based 

on the synchronization and remote access mechanisms provided by the GSAS environment. 

We also presented the KRAM remote swap space, which is a DMA enabled remote memory 

ram disk. The KRAM environment leverages the (unused) memory of remote nodes giving 

the ability to augment the memory space of the local applications. 

Starting from M6, FORTH is offering a remote access facility to the Juno multi-board proto-

type, via a web-based reservation system (implemented using the Apache Virtual Computing 

Lab platform). The same web-based reservation system is also used for offering remote access 

to the Trenz multi-board prototype. 

Partners of ExaNoDe WP3 (namely: BSC, FHG, VOSYS and University of Manchester) have 

been using the current ExaNoDe prototype via this remote access facility, working towards 

adapting their respective run-time environments (OmpSs, OpenStream, GPI/GASPI) to match 

the Unimem memory architecture.  

For the next reporting period, we will work on providing the features and services described 

in this document in the upcoming prototype of ExaNoDe, following the timeline of the Ex-

aNoDe DoA. Moreover, we will work towards the following enhancements: 

 GSAS: We plan to enhance the performance of the GSAS environment. More specifi-

cally, we plan to improve the performance of atomic operations performed in a local 

node. Furthermore, we plan to extend the API of the GSAS environment in order to 

provide more advanced mechanisms for remote memory allocation. 

 DHT over GSAS: We plan to better optimize the concurrent data structure used in the 

DHT implementation in order to enhance its performance. We also plan to provide 

new, more advanced mechanisms for storing and accessing data on the DHT imple-

mentation, and conduct a comprehensive performance evaluation. 

 libNUMA support: We plan to port libNUMA support to the upcoming ExaNoDe test-

bed, and conduct a comprehensive performance evaluation. We expect this functional-

ity to be incorporated within a unified framework for managing and utilizing remote 

memory. 

 

  



 

Project No. 671578 ExaNoDe Deliverable D3.7 Page 33 of 33 

 

6 References 

1. The EUROSERVER project. European Exascale System Interconnect and Storage. GA-

610456. http://www.euroserver-project.eu.  

2. The ExaNest project. European Exascale System Interconnect and Storage. GA-671553. 

http://www.exanest.eu/.  

3. EUROSERVER: Energy efficient node for European micro-servers. Y. Durand, P. M. 

Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy, G. Gaydadjiev, J. Goodacre, M. 

Katevenis, M. Marazakis, et al. Verona, Italy : IEEE, 2014. Euromicro Conference on Digital 

System Design (DSD). pp. 206-213. 

4. The SGI origin: A ccNUMA Highly Scalable Server. J. Lenosk, and D. Laudon. s.l. : ACM, 

1997. ACM SIGARCH Computer Architecture News. pp. 241-251. 

5. Trenz Development Platform Technical Reference Manual - TE0808-03. http://www.trenz-

electronic.de/fileadmin/docs/Trenz_Electronic/TE0808/REV03/Documents/TRM-TE0808-

03.pdf. May 2017.  

6. Kallimanis, Nikolaos D., et al. Design of the ExaNoDe Firmware. Deliverable D3.6. 

ExaNoDe: European Exascale Processor Memory Node Design.  

7. Revisiting the combining synchronization technique. Fatourou, Panagiota and Kallimanis, 

Nikolaos D. 2012. In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and 

Practice of Parallel Programming (PPoPP 2012). pp. 257-266. 

8. Juno ARM Development Platform. http://www.arm.com/products/tools/development-

boards/versatile-express/juno-arm-development-platform.php. 

9. A NUMA API for Linux. Technical Linux Whitepaper, Novell, available at 

http://developer.amd.com/wordpress/media/2012/10/LibNUMA-WP-fv1.pdf. Kleen, Andy. 

April 2005. 

10. Lameter, Christoph. Numa (non-uniform memory access): An overview. ACM Queue . 

2013, Vol. 11, 7. 

 


