[3*INoDe

'¢INoDe

D3.2
Runtime systems (OmpSs, OpenStream) and
communication libraries (GPI, MPI): Advanced
Implementation customized for ExaNoDe architecture,
Interconnect, operating system

Workpackage: | 3 Enablement of Software Compute No
Author(s): Valeria Bartsch, Carsten FHG

LojewskKi

Antoniu Pop UOM

Paul CarpenteBabis Chalios | BSC
Antonio J. Pefigkyunghun Kim
Andrea Bartolinj Francesco ETHZ

Conti
Authorized by | Paul Carpenter BSC
Reviewer Paul Carpenter BSC
Reviewer Giuliano Taffoni INAF (ExaNeSt
WP2 Applications
lead)
Reviewer Manolis Marazakis FORTH
Dissemination .
Public (PU)
Level
Date Author Comments Version| Status
2017-07-18 Antonio Pena | Initial MPI Versionadded V0.1 Draft
2017-07-21 Carsten GPI Versionadded V0.2 Draft
Lojewski

201708-28 Babis Chalios | OmpSsOpenStream and parallel | V0.3 Draft
Antonio Pop runtime supporsection added
201708-30 Antonio Pena | Updated MPI version, including V0.4 Draft
measurements

Project No. 671578 ExaNoDe Deliverable B.2 Page of viii

[3*INoDe

Paul Carpenter,
Antonio Pena
Andrea
Bartolini

20170831 Andrea Power Management added V0.5 Draft
Bartolini

201709-06 Valeria Bartsch | Executive Summary, Introduction, | V0.6 Final

Concluding Remarks added

2017+09-26 Paul Carpenter, Revi ewer 6 s ¢ omme| V0.7 Including
Giuliano added some of
Taffoni, the
Manolis reviewers
Marazakis, comments
Antoniu Pop,
ValeriaBartsch

Project No. 671578

ExaNoDe Deliverable B.2

Pageii of viii

[(3%INoDe
Executive Summary

In this deliverable,we describe the runtime systems (OmpSs and OpenStream) and
communicationlibraries (GPI and MPI) being adapted to the ExaNoDe hardwditeese
runtime systems and libraries will provide standard and portable programming interfaces so that
an application can take advantage of the unique system characteristics of the ExaNoDe
prototype without needing to optimize the application for the spediitMEM APIs defined

in D3.6[1] and D3.72].

All runtime systems and communication libramgve started to integratéNIMEM which
provides norcoherent loadstore and RDMA access to any other remote node. The integration
with UNIMEM will allow applicationgo transparently benefit frodNIMEM usingtheabove
mentioneduntimes and communication librari€penStream, MPI andR3 are being directly
coupled with thedUNIMEM API, while OmpSs uses the underlying MPI layer to indirectly
couple withUNIMEM. To ease the integratioeffort an emulation library is being used
allowing tests on a standard x86_64 SMP systgthout the needo have theprototype
hardware available on sit€ests using the emulation library have been successftile third

year the partners plan to use ARM+FPGA prototypes to test their system integration.

The following limitations ofthe UNIMEM library havebeen foundwhen customizing the

implementations t&/NIMEM and are under discussion with FORTH:

1 Cooperation between FORTH and the other partners (particularly FHG) resulted in an
extension to the UNIMEM API functionalitydntil July 2017, theprototypes had a bug
when using more than ofeiffer allocation registered with the communication hardware,
and no memory registration APivas not available.There was also an issue that the
UNIMEM API incorrectly specified that only one buffer could be registeredtimbe.This
prevenedregistering useprovided memory buffers preventingturn a lowlatency zere
copy approachThis bottleneck shouldow be resolved in theewestUNIMEM software
and needs to be tested.

1 A parallel startup mechanislike mpi_run orgpi_run isnotyet availableand standard tools
and scriptscannot be used odNIMEM. In addition, environment settings/variables and
command line arguments must be communicated to the remote node and setup correctly
before a process inside a aliel topdogy can start. We ar@ the process of defining an
interface thafulfils the requirements for GPI and MPI to start up remote processes.

In addition to the integration witdNIMEM all runtime systems and communication libraries

also start to integrate A suppore.g.based orexperience from previous projecis.g. BSC

has participated in th&XIOM project UoM is participating in the ECOSCALE project.

Finally, this deliverable describes other runtime support, specifically regarding thermal and

powermanagement and runtime libraries for performaeritical primitives:

1 The ExaN®e hardware does not provide hardware mechanisms to control power
consumption, so the power and thermal control in the scope of the project will directly
control the frequency focores to optimise the power reduction while minimizing the
application performance los§Vith the MPI profiling tool in the reference application
QuantumESPRESS®DVFS(Dynamic Voltage Frequency Scalingdsed power capping
approach has been tested Aad shown competitive results with respect to hardware based
power and thermal control mechanisms.

1 Dynamic load balancing has been implemented as a dynamic load balancing library on top
of UNIMEM. It relies on remote atomic operatiomovided byUNIMEM for which an
emulation library has been developed which is integrated with the FORTH RDMA
emulation library.

These technologies will be made available and potentially integrated into the optimized

implementations of GPI, OmpSs, OpenStream and MPI.

Project No. 671578 ExaNoDe Deliverable B.2 Pagsiii of viii

[3*INoDe

Table of Contents

R [11 0T ¥ [od 1 [o ISP PPPPPPPI 1
2 RUNIIME SYSTEIMIS...coiiiiiiiiie et eeeea e eeben e e 3
P2 R © 1 1 1] 6 15 3= PP PPN 3
2.1.1 Introduction t0 OMPSE2.....cooiiiiiiiiiii e ree e eeene bbb 3
2.1.2 Nanosb6 runtime system on distributed Mmemory.............cccccceciiicceeeeevennnnnns 4
2.2 OPENSITEAIML. ...ttt et eer s 9
2.2.1 Introduction t0 OPENSTIIEAM..........uuvuuiiiiiee e e ceeerrr e e e e e e e e e e e e e e eeeer e e e e aeeaes 9
2.2.2 Exploiting UNIMEM in OpenStream...........oooviiiiiiiiiimmmnieeiiiiiiieeeeeeeees 10
A T [211 o] [T 1T o] = £ o 10
2.2.4 EXANOUE MINHBPP. . teeeeeeieeeieiiieeee ettt eene e 11
2.2.5 Towards FPGA INtEQration.........ccceeiiieeieeeeiiceeeiieee e e eeeevatenne e e e e e 11
2.3 Parallel runtime SUPPQLL.........oooiiiiiieeee e as 12
P2 0 A 111 {0 To [8 [i [o) o I PP 12
2.3.2 Optimized runtime SUPPQLL..........uueriiiiiiiiiii et 12
3 CommuNication LIDIari@S.........cooiiiiiiiiiiieees st eenss e e e e e eeeaeeeeeeann 13
50 1 TP 13
3.1.1 INtroduCtioN t0 GPL.......uiiiiiiiiiiiiiiiiii ettt 13
3.1.2 Exploiting UNIMEM iN GPL......ccoiiiiiiiiiiiiiiee et 13
3.1.3 Design of preliminary software implementatian...................cccovceevevvvnnnnns 15
3.1.4 Suitable EXaNOAE MIBBPD. . .cuiiiiiiiiieieiiei e 16
3.1.5 Current Status and LImitations...........ccccuuuriiiiimmmniiiiiiiiieeeeeeeee e eneseeeeeees 16
3.1.6 FPGA Prototype SYSIEML.......ccoiiiiiiiiiiiiiiiieeee e 18
1 1| PP PPPPPPPI 18
3.2.1 Stateof-theArt MPICH........cooiiie e 18
3.2.2 MPI over UNIMEM ArChiteCture..........coooeeiiiiiiiiiiiieee e 19
3.2.3 Development Approach and Current Status..............ooevvvvvimmmreeeeeeeeeennnnnns 19
3.2.4 Preliminary reSUILS...........iiiiiii e eeeeee e 20

3.3 Further Requirements of the runtimes and communication models on the urderlyin
172 11 {0 1 P PUPPRR 21
3.3.1 Requirements of OMPSS.......oooiiiiiiiiiiie et 21
3.3.2 Requirements of OPENSIream.........coooiiiiiiiiiiiieee e 22
3.3.3 Requirements of GPL........cccooiiiiiiiiii e 22
3.3.4 Requirements Of MPL.........ooiiiiiiii e 22
3.4 Suitable EXaNODE MIRBPPS .. uuuuiieeeieeeeeeeiiiiieieeee e e e e e e e e e e e et eeeeeaeaaaemmeeeeeeeeeeannne 23
4 Power and thermal CONTIOL...........u i eeeeeeer e 24
4.1 HPC ArCHITECIUIES....cc e e e e cteeee e eens e e e e e e e e e e e e e e e eeanes 24
4.2 Power Management in HPC SYStEIMS.............uuuuiiiiiiimeeiiiiiiiiiiieeeeee e 25
4.3 Hardware Power Controller..........oooo oo 26
4.4 ArChItECUre TarQel.....ccoiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e e 27
4.5 Monitoring RUNTIME........uii e eee e e e 27
v I Y/ 11 1 aTo o [o] (o |V /PP PRPORR PP 28
A7 SYSEEM ANAIYSIS. ... a e n——————— 29
4.8 APPICALION ANAIYSIS . ..coiiiiiiiiiiiiii it ceee et a e e 30
4.9 Impact on the power and thermal runtime SUPPOLt..........cooviiiiiiieeer e, 32
5 ConcCluding REMATKS........coiiiiiiiiiiiii e eeeee s 33
B FULUIE WOTK ...t e e e e e e e aeenr e e e e e e e e e e e eees 34
7 Referencesral Applicable DOCUMENIS........ccooeeeeiiiiiiiiiieeee e 36

Project No. 671578 ExaNoDe Deliverable B.2 Pagelv of viii

[3TINoDe

Project No. 671578 ExaNoDe Deliverable B.2 Pagev of viii

[3*INoDe

Table of Figures

Figure 1: Finegrained release of dependencies using the weakwait construct of @hpSs
Figure 2: Virtual Memory (VM) address space representation of cluster nodes managed by

NAINOSO ...ttt ettt oo et nmme e e et e e e e e eeth e e e e e e annneeee et e e e e e enraa e e)
Figure 3: Distributed allocation in Nanos6 is a collective operation. The array is allocated first
on all nodes and then logically distributed across them...............cvvvceririieniinnnnnd 6

Figure 4: Nanos6 task offloading. A ready task can be offloaded to a remote node. All tasks
with a dependency on the offloaded task will wait until the offloaded signals its

(o0 141 0] (=3 1 o T PPRPUPPRRRS 7
Figure 5: Scaling of a matrix vector multiplication operation implemented in OmpSs with

NANOSE CIUSTEIS. ..ottt ir e et e e erer e e et et e e e e e e e e e e e e s ammmeaeaaeeeeeeas 8
Figure6: Scaling of a matrix vector multiplication operation implemented in MRI......... 9
Figure 5: GPI Building blocks for ExaNoDe architecture support..........cccoevvvvvvieeeeen.n. 13
Figure 6: GPI Building BlIoCks of UNIMEM............ccciiiiiiiiiiieeeniiiiee e 14

Figure 7: GP42 bandwidh on UNIMEM Prototype system (Sockets over Unimem).....17
Figure 8: GPL2 latency on the UNIMEM Prototype system (Sockets over UNIMEM)..18

Figure 9: Statef-the-art MPICH design, showing UNIMEM OFI providet................... 19
Figure 10: Future optimed UNIMEM MPI implementation with overriding collectives19
Figure 11: Roundtrip latency for small message SiZeS............ccvvvvvvieeeeeceeeeeeeeeeeeiien, 20
Figure 12: Throughput for large data payloads.................eeviiiieeciiiiiiiiiiiiiiiiieeee e 21
Figure 13: DVFS MECNANISIL........vuiiiiiiiiiie et ceeettiiese s e e s e e e e e e e e e ameess s s e e e e e e e aeeeaeeesesenseens 25
Figure 14: RAPL POWET AOM@IN........cciiiiiiiiiiiittieeeesiiiiib et e s eeesee e e e e e e e e aaeeeeeeas 26
Figure 15: MONItOr FUNTIME.........oiiiiiiiiiiice e e e e e e e e e emmma s s e e e e e e e e e e e e e e e eeeennneas 28
Figure 16: Comparison of DVFS and RAPL (Time window of 50 secands)................ 29
Figure 17: Sum of MPI and application time grouped by interval frequencies............ 30
Figure 18: Time gain of DVFS w.r.t RAPL grouped by interval frequencies............... 31
Figure 19: Average CPI and number of AVX instructions retired on different interval
FTEQUEINCIESttt e e 32

Project No. 671578 ExaNoDe Deliverable B.2 Pagevi of viii

List of abbreviations

Term
ACPI
API
APP
BW (MPI)
CPI
CPU
DoA
DSA
DVFS
EAW
ECED
FFT
FIFO
FPGA
FSP
GAS
GASNet
GASPI
GPL
GPU
GSAS
HLS

IB (MPI)
ILP
IMC
ISP
LLC
MCTP
MPI
MPSD / MPMD
NUMA
OFlI
(O
oTC
PE
PGAS
PID
PMPI
PMU
PoC
QE CP
RAPL
RDMA
RTM
SIMD
SPSD / SPMD
SMP
TDP

Project No. 671578

Definition
Advanced Configuration and Rer Interface
Application Programmer Interface

Busy Waiting MPI

Cycles Per Instruction

Central Processing Unit

Description of the Action

Dynamic Single Assignment

Dynamic Voltage and Frequency Scaling
EnergyAware MPI Wrapper

[3*INoDe

Edge and Coherendenhancing Anisotropic Diffusion filter

Fast Fourier Transform

First In First Out

Field Programmable Gate Array
First Step Problem

Global Address Space

Global Address Space Networking

Global Address Space Programming Interface

GNU General Public License
Graphics Processing Unit
Global Shared\ddress Space
High-Level Synthesis
Interruptbased MPI

Integer Linear Programming

i-th Step Problem
(Fraunhoferds) Mul ti
Message Passing Interface

Multiple Program Single/Multipl®ata
Non-Uniform Memory Access

OpenFabrics Interface

Operating System

Optimal Thermal Controller

Partitioned Global Address Space
Proportionail Integral Derivative (controller)
MPI Profiling interface

Proofof Concept (prototype)

Quantum ESPRESSO CG#&arrinello
(Intel) Running Average Power Limit
Remote DMA (Direct Memory Access)
Reverse Time Migration

Single Instruction Multiple Data
Single Program Single/MultiplBata
Symmetric Multiprocessor

Thermal Design Power

ExaNoDe Deliverable B.2

cor e

Thr ec

Pagevii of vii

[3CINoDe

T™MC Thermataware Task Mapper and Controller
UDP User Datagram Protocol
VMR Virtual Memory Region

Project No. 671578 ExaNoDe Deliverable B.2 Pageviii of viii

[3%INoDe

1 Il ntroduction

The ExaNoDe project is developing a unique HPC system architecture basedJdHNEM

architecture, which is also the basis for the related projects EUROSERBYHRaNeS{4]

and EuroEXA[5]. A system that implemen$NIMEM consists of a number of computational

nodes connected through a custom network. Each node typicallyrsontaltiple processing

cores, which communicate amongst themselves using coherent shared memory as provided by
the hardware. Distinct nodes communicate usiid{MEM6 s gl ob al addr ess s
which provides noitoherent loadstore and RDMA access to anther remote node. The

UNIMEM hardware architecture is exposed to user space via the Global Shared Address Space
(GSAS), usesspace RDMA, mailbox and remote allocator APIs defined in [B.§which

was due in project montt2)

For easier programming, the application developers will be provided with standard and portable
programming interfaces through the runtime systems and communication libraries described in
this deliverable. This approach allows applications to take sayarof the characteristics of

the ExaNoDe system architecture &idIMEM architecture, without them having to be ported

to a specific API and without the application developer needing to understand in detail the
associated performance tradeoffs.

Section2 describes the work done on integrating the-taesked programming models OmpSs
and OpenStream witdNIMEM. In addition work done to support FPGA programming has
been included in the sectios well as the choice of mhuaipplication to test the programming
model with.

OmpSs is a taskased programming model that extends OpenMP with new directives for
asynchronous parallelism and heterogeneous devices such as GPUs and FPGAs. In ExaNoDe,
the clwster implementation of OmpSs runtime system Nanosé6 is being leveraged as the basis
for efficient runtime support for offloading tasks across nodes oJR®MEM architecture

with the help of the underlying MPI communication APl. OmpSs already supporxadiffy

of tasks to FPGAs, using Higkevel Synthesis (HLS), and it is being ported to the Xilinx
UltraScale+ FPGA in the AXIOM Proje{#]

OpenStream is a taglased datflow programming model also implemented as an extension

to OpenMP, and designed for efficient and scalable-dat@n execution. OpenStream has

explicit dependencies in the source program marked using streams. Comeile
transformations map each task~&6s memory acce
OpenStream runtime system controls memory allocation, task placement and RDMA memory
transfers between tasks. OpenStream is supporting OpenCL to exploit FPGAs and is integrating
the ECOSCALH7] High-Level Synthesis (HLS) toolchain

Section3 describes the integration of the communication APIs GPIl and MPI in the ExaNoDe
prototype.In addition work done to support FPGA programming has been included in the
section as well as the choice of mapplication to test the programming mbdeh.

GPlis an opersource communication library that implements the GASPI standard PGAS API.
It provides a portable and lightweight API that leverages remote completion arsidede
RDMA-driven communication, both being efficiently supported bydhNeMEM architecture.
UNIMEM dependent module of GPI have been identified, integrated WNRHMEM and
integratedwith an emulation framework to socket layer@NIMEM, the software has been
tested on the remote prototygesetup of a small test system cistiag of Xilinx Ultrascale+
FPGAs and ARM 64bit in one package is foreseen to build up the necessary FPGA support.

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel of 37

[3*INoDe

MP1I is the standard messagassing API supported by all serious HPC systems and employed
by the vast majority of scientific applicatiortsificient support for MPI is mandatory for any
HPC system or prototype, and MPI support is an important output from ExaNoDe WP3 that is
needed by the ExaNeSt projentd will be further optimized in the EuroEXA projethe
OmpSs integration AINIMEM will be based on MPI. The coupling will be done with the-low
level network interface OFI on which the MPI implementation MPICH is built.

Sectiord describes thermal and power management. These technologies will be made available
and potentially integrated into the optimized implementations of GPIl, OmpSs, OpenStream and
MPI.

The runtime systems and communication libraries are being prototyped \aeidpee using

(a) remote access to the mudthard prototype hosted at FORTH in Crete, which provides
functional verification on real hardware, and (b) software emulation cUMIMEM APIs
using a software layer provided by FORTH and UOM. The latter gesuthe ability to perform
substantial development work on a local machine.

The runtime systems and communication library will be tested and evaluated using the mini
applications from WP2 (from D2[8]) as indicated ifTablel.

Table 1: Comparison of runtime systems and communication libraries

MPI GPI-2 OmpSs (clusters) OpenStream
Programming Message PGAS Tasks with argument Tasks with explicit
model passing directionality dependencies specified
(input/output) using streams
Data visibility Local to MPI Global Global Global
process
Mapping work to Manual Manual Runtime system Runtime system
nodes
Languagetype API API Language extension Language extension
(Pragmas) (Pragmas)
Execution style MPMD MPMD SPSD / SPMD SPSD / SPMD
Inter -node Explicit Explicit Implicit Implicit
communication (message (onesided (runtime system based (runtime system based ot
passing) asynchronous) on argument streams)
directionality)
Work scheduling Manual Manual Runtime system Runtime system
Base language(s) C, C++, C, FORTRAN C, FORTRAN, CUDA C
FORTRAN
WP2 Mini-app All GPI test suite, MiniFE HydroC, MiniFE and
separate stencil NEST
kernel

Project No. 671578 ExaNoDe Deliverable D3.2 Page2 of 37

[3INeoDe
2 Runti me systems

The work on two taskased runtime systems, OmpSs and OpenStream, is presented in this
section. Both OmpSs and OpenStream extend the programming language (C, FORTRAN or
CUDA in case of OmpSs, C in case of OpenStream) with pragmas. The internode
communicatn is implicit. OmpSs and OpenStream will explOiNIMEM in their cluster
implementation.

2.1 OmpSs
This section was contributed by BSC.

This section presents the contributions of BSC related to the OmpSs programming model and
the Nanos runtimeystemfor distributed executionln Section2.1.1 we discuss the latest
features of OmpSs which enable more opportunities for exploiting parallelism at the
programming moddevel. Section2.1.2 presentghe distributed memory version of Nanose6,

the new implementation of the OmpSs programming model. Se2tib@.1 presents the
memory model of the distributed memory Nanos6, Se@idm2.2describes the execution
model, showing how tasks can be offloaded to nodes of the cluster transparently to the
programmer, SectioR.1.2.3discusses the design of the communications layer of the runtime
system and finally, in Sectidh1.2.4we show some initlaesults from popular linear algebra
kernels ported to the OmpSs programming model.

2.1.1 Introduction to OmpSs-v2

OmpSs|[9] is a taskbased parallel programming model aimed to provide scalability and
malleability without significab programming effort. OmpS& [10] is an extension of the
programming model, initiated in the INTERTWIRIEL] Project that increases the scalability
of applications by integrating more efficientlysted tasks, a natural way to decompose a bigger
problem in finergrain computational tasks, with task dependencies.

2.1.1.1Fine-grained release of dependencies across nesting levels

Taskbased programming models that support dependencies and nesting normally require a the
invocationof a synchronisation primitive at the end of the task, e.g. an Opdabkwait

#pragma omp task depend (inout :a,b) weakwait /[Task T1

a++; b++;
#pragma omp task depend (inout :a) /[Task T1.1
a+=..;
#pragma omp task depend (inout :b) /ITask T1.2
b+=..;
}
#pragma omp task depend (in:a) /[Task T2
St a+ .
#pragma omp task depend (in :b) /[Task T3
.= tb+

Figure 1: Fine-grained release of dependencies usitige weakwait construct of OmpSsv2

pragma, which blocks the task until all its subtasks have finished. This is required in order to
preserve the correct semantics of dependencies across tasks. Prior worllNir&R& WinE
Project introduced the OmpS8 weakwaitclause totask pragma. Theweakwait clause

Project No. 671578 ExaNoDe Deliverable D3.2 Page3 of 37

[3%INoDe

implicitly inserts a taskwait after the execution of the task, which allows the runtime system to
understand that no more subtasks are going to be creatéteasebendencies of the task that
do not need to be enforced any more can be released incrementally.

For example ifFigure 1we have a code snippet with task T1 that depends on varedtet

and has two subtasks T1.1 which dependa and T1.2 which depends dmtask T2 which
depends oa and task T3 which depends on T3. Withoutwleakwait construct T1 woulteed

to include apragma omp taskwadtt the end of the task bodl2 and T3 would wait until the
completion of T1 whichwould happen only after T1.1 and T1.2 have finished. With the
weakwait clause once the body of T1 exits only the live dependencies of T1 need be enforced,
i.e., if T1.1 has not yet finished the dependency from T1 to T2 becomes a dependency from
T1.1to T2,s0 that T2 can start even if T1.2 has not finished yet. This allows the discovery of
more parallelism dynamically.

In the previous example, in order to release dependencies this way task T1 needs to finish
execution. However, it might be useful to reledspendencies while the body of the parent
task is still executing, e.g., the task knows that it will use some data only at the beginning. In
order to enable this functionality Omp®2 introduces a new directive:

#pragma omp release depend(é)
which releaes all the dependencies in the list of the depend clause.

2.1.1.2Weak dependencies

Section2.1.1.1presents how OmpS& allows the early release of dedencies from inner to

outer nestingevels in a finegrained fashion. However, where nesting is used, it is likely that

the outer nesting levels define dependencies in a coarser granularity. Even if some elements of
the depend clause of the outer tasknly meeded by its subtasks, its execution and eventually

the creation of the subtasks will be deferred and discovery of parallelism, suspended.

OmpSsv2 extends the depend clause with weakin weakoutand weakinoutdependency

types. Semantically, thesgpes define dependencies equivalent to theweak types. When

a task declares weak dependencies, though, it signifies that it will not access itself the data, only
its subtasks will do, hence the task is allowed to start its execution, which willieltoaereate

the subtasks.

As a result, early release of dependencies and weak dependencies, together in action can
potentially result in increased parallelism discovery while expressing the applications using
nesting which is very natural for a large riugn of problems.

2.1.2 Nanos6 runtime system on distributed memory

OmpSsv2 is implemented in Nanos6 the successor of the Nanos++ runtime system. The choice
to implement a new runtime system, rather than implementing Onth&s extensions in
Nanos++, is guidetfom the requirements of backwards compatibility for OmpSs applications
as well as better maintainability of tNe@nos6 codebase in comparison with Nanos++

Nanos6 provides a new version for the distributed memory runtime implementation in the
ExaNoDe prgect, which incorporates the features of the OmySgrogramming model and
introduces a novel memory model, task offloading mechanism and communication layer.

2.1.2.1Nanos6 memory model

The distributed memory version of OmpSs developed in the ExaNoDe Propeadgs a
Partitioned Global Address Space (PGAS) model abstraction layer for the memory view of the

Project No. 671578 ExaNoDe Deliverable D3.2 Page4 of 37

[3%INoDe

system.This OmpSs memory layout is genepairpose and applicable to an implementation
for any cluster, but it enables future work, in ExaNoDe or EuroB¥Aake advantage of the
UNIMEM shared memory architectur&éhe OmpSsmemory modepresentshe distributed
physical address space of the nodes involved in the computation as a single address space which
is accessible by every compute node of the cluster resulton conventional clusters that
require physical memory copies among nodes of the clilséeprogrammer does not need to
explicitly programthesedata transfersas they are handled by tNeanos6 distributed memory
runtime using MPI The currat implementatiorwill target UNIMEM via the UNIMEM
optimized MPI library. We will consider the potential benefit of future optimizations to use the
native UNIMEM API toeliminatethe data transfers daNIMEM platforms, while maintaining
software compatiliity with traditional distributed memory clusters.

Node 1 Node 2 Node 3
f HE'AP Node 1 local Node 1 local
t addresses addresses
STACK
E HEAP
g g Node 2 local : Node 2 local
S g addresses STACK addresses
T e

Node 3 local Node 3 local T

‘ addresses addresses '
STACK

T Distributed array 1
. \\
22 T
3 0
o £ : : :
3 2
2 ; ; ;

Distributed array 2

Figure 2: Virtual Memory (VM) address space representation of cluster nodes managed by Nanos6.

Figure2 shows the layout of the virtual memory of the cluster nodes managed by the Nanos6
runtime system. During initializatioNanosémaps in every node a virtuatemoryregion

(VMR) large enough thandle the maximum memory requirements of the OmpSs application.
The starting address of these VM regions is the same on every node. This is necessary in order
to facilitate the transfer of data across nodes without having to apply address translasisn acr
nodes. Memory requests are served through custom allocators of the Nanos6 runtime system.
Subsequently, Nanos6 divides each VMR into two distinct regions, which have different
allocation semantics.

The lower addresses of the VMR are reserved for ctiorel local memory allocations, i.e.,

stack and normal heap allocations. Nanos6 divides this set of addresses equally among the
nodes of the cluster. This means that every address within this region is used to store the local
data of one particular noadé the cluster. The rest of the nodes of the cluster use these addresses
whenever they need to bring local data of the said node, temporarily. This simplifies the process
of moving data around the cluster, since it eliminates the need for address tnanslati

The higher addresses of the VMiRereserved fodistributed allocationsAn allocation from
this memory region is implemented inside the runtime system as a collective operation across
all nodes of the clusteFigure3 describes the operation of a distributed allocation. Firstly, the

Project No. 671578 ExaNoDe Deliverable D3.2 Pageb of 37

file:///D:/../../Library/Containers/com.microsoft.Word/Data/images/nanos6-mem-model.pdf

[3INoDe

whole distributed array is allocated in every cluster node at exactly the same memory range
n oM 0 1i Q& Subsequentlyeach node becomes theme nodef one part of the array.

This means that by default, the latest produced data of a subrange of the array will be stored in
its home node. If during execution, a ranged @i 6XE D O IE OQQ 60Oneeds to

be used by a task that is scheduled on a node different than its home node, a memory transfer

will be initiated from the home node of the subrange. When a node fetches a range of data from

its home node it uses the same range of addresgesiasie node does. Those virtual addresses

are available also locally, since during the allocation of the array these addresses were allocated

on every node of the cluster. In this way, Nanos6 does not have to do address translation when

it moves distrilited data across the cluster nodes. The way an array is distributed to home nodes

is controlled by the programmer who can choose the distribution policy. Information about the

distribution policy of arrays can be used later by the Nanos6 scheduler intordeke

decisions based on locality criteria. Thus the distribution policy is meant to be chosen according
to the access patterns of the application.

/* Phase 1. allocate nenory */

Figure 3: Distributed allocation in Nanosé6 is a collective operation. Tharray is allocated first on all nodes
and then logically distributed across them

2.1.2.2Nanosb6 execution model

The memory model is coupled with the tgskrallel semantics of OmpSs for defining

computations. The programmer defines tasks i.e., computationathatitgperate on ranges of
data located on the address space.

Project No. 671578 ExaNoDe Deliverable D3.2 Page6 of 37

[3%INoDe

Nanos6 uses a mastslave architecture. The OmpSs application begins executing on the
masternode, similarly to the sharedemory flavour of the runtime. The code is executed
serially and whenever#pragma omp task directive is encountered a new task is created
and becomes available for concurrent execution once its dependencies are resotred. Wh
running on distributed memory, the scheduler of Nanos6 can also decide to offload tasks to
slave or elseremote nodes once they are ready for execution, i.e., all their strong dependencies
have been resolved.

During execution, the scheduler takesisiens regarding the node onto which the task should

be offloaded. Before a remotedxecuted task executes its body function, the runtime system
copies any ndmodelocal data to the node that the task will execute on. The programmer needs

to declare althe dynamically allocated data that the task uses and the way the task will handle
them using the dependencies claus€$; out(), inout(), weakin(), weakqytaindweakinout().

When executing on distributed memory, in addition to declaring the depeeslantong tasks,

these clauses provide the necessary information about data transfers that must be performed by
the runtime before executing a task.

Node 1 Node 2 Node 3 Q Task completed

Task ready

Task pending

Dependency

Task offloading

v © O

Remote task finished

Figure 4. Nanos6 task offloading. A ready task can be offloaded to a remote nodall tasks with a
dependency on the offloadethsk will wait until the offloaded signals its completion.

Figure 4 presents an example of the execution model of Nanos6 for distributed memory
systems. In this example, when task T2 becomes ready for execution, the scheduler decides to
offload it to Node 2. The original task is marked aso#ffoadedtask and it remainsnithe
memory of Node 1 so that the dependencies within Node 1 are preserved. Task T3 on Node 1
has a dependency on T2 and as a result it will not be ready until the T2 is marked as complete.
This will happen once theemote T2 sends a message to the offled T2 signaling its
completion. Along with the task T2, Node 1 sends to Node 2 information regarding the location
of all the data that T2 takes as ingaf)andinout() dependencies). Once the access information

for all the input arguments of the remtdésk T2 on Node 2 is received the task T3 is ready for
execution. In addition, the remote T2 creates three subtasks. The first two are executed locally,
but T2.2 is offloaded by the scheduler from Node 2 to Node 3. The parent task T2 will not be
marked aomplete until the remote T2.2 finishes. When T2.2 on Node 3 finishes it sends a
message to Node 2 along with access information about all the output dependenoigs)i.e.,

Project No. 671578 ExaNoDe Deliverable D3.2 Page7 of 37

[ZTINoDe

andinout(). This information is then propagated from Node 2 to Nhd&t thispoint T3 can

start execution, knowing the location of all the output accesses of T2. This example shows how
Nanos6 uses the dependency system to propagate information regarding the location of all the
data of the OmpSs application. This scheme allows handle all the data transfers without

the need of a software directory, which simplifies the design and implementation and minimizes
the amount of communication among the cluster nodes.

2.1.2.3Communication Layer

The implementation of Nanos6 requires commuracatamong the cluster nodes for
exchangingcommandand data transfermessages. Command messages include all the
messages for offloading tasks, synchronization of nodes, sending information regarding the
location of data and initiating data transfers. Deaadfer messages are used to transfer data
regions among nodes.

The communication layer of Nanos6 operates as an abstraction layer that decouples the rest of
the components of the runtime system from the actual library that is used to implement the
actud network transfers. This design is very modular since it allows the network
communication layer to be transparently implemented on top of different libraries and allows
the user to choose the most desirable implementation at runtime.

For ExaNoDe we havenplemented the communication layer of Nanos6 on togtaridard
MPI. This provides compatibility with all HPC systems that implement the MPI standard,
making it a very appealing choice. In particular, the port of MPI taJIRBMEM architecture

will allow Nanos6 to run on anyNIMEM platform without modificationsin future work, in
ExaNoDe or EuroEXAve will consider the benefit of eliminatirte data transfer messages
using the nativeJNIMEM API, while maintaining software compatibility with traditional
distributed memory clusters.

2.1.2.4Preliminary results
OmpSs matrix vector multiplication scaling
25000
20000
15000 ¢

10000 T _.

5000

MFLOPS
I

0 2 < 6 8 10 12 14 16 18

#procs
—8—ompss1K ompss2K ompss4K ompss8K ®—ompss16K @—ompss32K

Figure 5: Scaling of a matrix vector multiplication operation implemented in OmpSs with Nanos6
Clusters.

Project No. 671578 ExaNoDe Deliverable D3.2 Pages of 37

[3'INoDe

MPI matrix vector multiplication scaling

35000
30000
25000

20000

MFLOPS

15000

10000

5000 //\.

0 2 < 6 8 10 12 14 16 18

#procs
—&— mpilK mpi2K mpidK mpi8K ®—mpilekK ®—mpi32K

Figure 6: Scaling of a matrix vectormultiplication operation implemented in MPI

We have performedn evaluation of the initial implementation of Nanos6 usiagous

BLAS kernels portedo OmpSsv2, and compared them with the equivalent MPI
implementationskigure5 andFigure6, respectively, show the scaling of a matvigctor
multiplication operation in OmpSs aiMP| measured on the MareNostrum 4 supercomputer
The results show thatompared with MPINanos6currentlyfaces scalability issues when the
problem sizes increase. This could be attributed to various issues, e.g. the scheduler
implementation of Nanos6 owverheads relatet the offloading of tasks to nodes and
caching data to remote nod¥ge are arrently investigating these bottlenecks with the
assistance of Extrae and Paraver, whichlaéacing and performance analysis tools that
have been develep from BSC and are being integrated in Nanos6.

2.2 OpenStream
This section was contributed by UOM.

2.2.1 Introduction to OpenStream

OpenStreanil2] is a taskparallel, datelow programming model implemented as an extension

to OpenMP.It is designed for efficient and scalable ddtaven execution; sharetiemory
programming is allowed for fast prototyping, essentially following the OpenMP syntax, but
additional information must be provided by the programmer, using a dedicated syotaerin

to take advantage of OpenStream optimizations. In particular, OpenStream enables
programmers to express arbitrary dependence patterns, which are used by the runtime system
to exploit task, pipeline and data parallelism. Each -tlata dependence isemantically
equivalent to a communication and synchronization event within an unbounded FIFO queue.
Pragmatically, in the original shar@gemory instantiation, this is implemented by compiling
dependences as accesses to task buffers dynamically allatagé@dcution time: writes to
streams result in writes to the buffers of the tasks consuming the data, while read accesses to
streams by consumer tasks are translated to reads from their owprivasé buffers.

Compared to the more restrictive dataralel and fork join concurrency models, tagarallel

models enable improved scalability through load balancing, memory latency hiding, mitigation
of the pressure on memory bandwidth, and as a side effect, reduced power consumption.

Project No. 671578 ExaNoDe Deliverable D3.2 Page9 of 37

[3%INoDe

Currently developed at U@, OpenStream further takes advantage of the information provided
by programmers on task dependences to aggressively optimize memory locality through
dynamic task and data placement.

2.2.2 Exploiting UNIMEM in OpenStream

OpenStream relies on a privdig-defaut strategy for handling communication between tasks,
which means that despite a shamé mory view from the progra
communication is more akin to messg@essing than to concurrent shamdmory
communication. This is made possible byjuging programmers to provide additional
information on how data is accessed within tasks. This information is used at compile time to
generate the appropriate modifications to memory accesses to achieve Dynamic Single
Assignment (DSA). OpenStream tasksnpute on data available in input buffers and write
data in output buffers, each belonging to a unique task reading from them. Thikbwata
execution model is a perfect match for tkiNIMEM memory model, providing a
straightforward mapping of communiaati on top of RDMA and minimizing the reliance on
globalatomics. Furthermore, the privatization of data communicated between tals&&ey

to enabé the runtime to fully control the locality of memory allocation and of task placement.
OpenStream reliesn the intemode atomics provided in th&JNIMEM memory model to
implement lowlevel runtime algorithms, such as dynamic load balancing, -imude
synchronization and localitgware scheduling and memory allocation. This is further discussed

in Sectior4.2.

Further optimization of the behavior of the OpenStream runtime will be possible if UNIMEM
permits RDMA and atomics to be used within the same memory regions. This has been one of
the key challenges to port OpenStream as it has required splitting éh&trdatures used for
managing memory and task placement across separate memory regions while ensuring that data
and metedata remain coherent.

The development of concurrent datauctures and algorithms on memory models that do not
provide sequential ecwmistency is patently errgarone and time consumming. Testing poses
significant challenges as errors may only manifest when specific interleavings of memory
operations occur behavior which can be impossible to exhibit on emulation or on prototypes
wherethe timing is substantially different than the target hardware. This problem is further
compounded when the memory model is not uniform across all execution units deaabde
behavior will differ from intemode behavior. We expect that a substantiailmer of issues are

likely to become apparent when executing on increasingly advanced hardware that allows more
memory interleavings to occur.

For example, we expect that the behavior of atomic operations provided in UNIMEM will have
an impact on our worktealing loadbalancing algorithm if there is an asymmetry between the
success rates of local and remote atomic operations. Such an asymmetry would introduce a bias
in the way our algorithm works, which in turn would translate into poor work distributiossc

the machine. As we further discuss below, this is critical for OpenStream programs as we do
not assume an initial distribution of data and work across the machine.

2.2.3 Implementation

Communication is automatically managed by the OpenStream runtimeersysPart of the

work is done at compilation time, by privatizing all data dependences between tasks and
introducing runtime hooks for setting up remote memory operations. This step enables the
runtime to determine which data is locally available and whafa needs transferring, then
initiate the memory transfers and determine when all data required for execution is finally

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel0of 37

[3%INoDe

available. As no worker is waiting for data to be transferred, a goodbkdadce will ensure
that computation and communicationugly overlapped.

Memory and work placement are driven by two main algorithmd.3] [14]. The main
mechanism for nodes and workers to acquire work is randomizedstealkng. This allows to
balancethe workload across compute resources, but may be inefficient with respect to the
amount of communication it generates as tasks are randomly acquired by workers across the
entire machine. Dependenaaare memory allocation and wepkishing allow to reducthe

amount of communication required by moving tasks to nodes that will require the least data
movement.

Multiple node startup is managed directly within the OpenStream loader rather than relying

on an external tool, and uses tkenoteForkfacility. The startup procedure instantiates a core
process on each node and initialises the OpenStream communication and scheduling data
structures, then allows the local processes to set up a team of worker threads on each node.
There is no initial distbution of work as OpenStream relies primarily on hierarchical work
stealing for loaebalancing. As soon as a node is ready to start executing tasks, it starts
attempting to steal work from neighboring nodes.

In later stages of execution, once data itrithsted across the machine, localaware work

pushing will complement worktealing by sending tasks that require remote data to be executed
on the node where most of their inputs are located. While this approach helps reduce the amount
of data movemendverall, it may lead to poor lodsalance if it is used on its own as it will

have a tendency to concentrate data and work on a subset of nodes. Randomizteaimogk

is therefore still required to ensure that computation is reliably distributed adiossles,

further enabling the possibility of seamlessly bringing new nodes online during execution.

2.2.4 ExaNode Mini-app

Due to the availability of the HydroC miapp in multipleparallel programming models
including a C+OpenMP version, this has beenpghmary target for porting to OpenStream.
The initial translation from OpenMP parallel loops to OpenStream tasks relying on shared
memory communication was straightforward and yields identical performance results on
uniform shared memory muitiore platfams. This compatibility behavior is allowed in
OpenStream to facilitate porting efforts, however, this version cannot be compiled directly to
execute on multipldJNIMEM nodes.

In a second step, the OpenStream implementation was converted fromreleaney data
parallel execution to pure daflaw, where tasks communicate exclusively through privatized
streams. This step was complicated by the frequent use of shared memory pointer arithmetic
when communicating partial results between different computphiases of HydroC, but it is
essential to enable multiode execution and to allow showcasing the advantadéNIdiEM

RDMA communication overlapping computation.

The porting effort has now shifted towards optimizing the -flat® implementation, in
particular focusing on eliminating owsynchronization between computation steps, and
towards integration in the NIMEM emulation framework and the physical prototypes.

2.2.5 Towards FPGA integration

To exploit the FieleProgammable Gatarrays (FPGASs) that represent the bulk of the
computational power in the ExaNoDe system, we have made the decision to extend
OpenStream with OpenCL support, enabling programmers to specify multiple versions for the
work function of each task, written either in C (possibly wrapping code in other sequential

Project No. 671578 ExaNoDe Deliverable D3.2 Pagellof 37

[3%INoDe

languages) or in OpenCL. These versions are managed by the OpenStream dynamic scheduler,
which decides at runtime on the best target for each kernel.

Currently, OpenBeam is able to schedule the different kernel versions across CPU cores and
multiple, heterogeneous OpenCL devices (e.g., CPU cores + AMD APU + discrete GPU) and
we are currently optimizing the scheduler heuristics for dynamically adapting the target devi
based on the observed cost of communication and compute time on each available resource for
the different types of tasks.

This preliminary work has cleared a path to the next step, which is to integrate the OpenStream
environment with the ECOSCALE highvel synthesis toolchain to take advantage of the Xilinx
Ultrascale+ FPGASs that will be available on the ExaNoDe system. The design of the current
implementation was chosen to maximise the flexibility of the OpenStream framework and we
expect to be abl® integrate FPGAs in the OpenStream resource model and scheduler.

2.3 Parallel runtime support
This section was contributed by UOM.

2.3.1 Introduction

In order to maximize the efficiency of execution, both in terms of performance and energy, and
to exploit fully he massive parallelism provided by the ExaNoDe architecture, it is essential to
optimize performanceritical aspects of the runtime. In particular, UOM is focusing on
dynamic load balancing through weskealing, dynamic scheduling for memory locality and
synchronization.

2.3.2 Optimized runtime support

UOM has ported the current staibthe-art implementation[14] of work-stealing dynamic

loadb al ancing based on Ch a s-rmodedoadibaldneing,6as welhdsg o r i t
the fastest hybrid barrier synchronization implementdti&i for a single node. This first step

is essential even with the new UNIMEM memory model because these algorithms are very
sensitive to latency and therefore cannot oglya uniform view of the memory.

In a second step, UOM has implemented a functional unoptimizedsteakng library on top

of UNIMEM for inter-node load balancing, which is integrated with the intvde algorithm

in the form of hierarchical worktealng, whereby work is sought in widening neighbourhoods.

This implementation relies on the remote atomic operations provided by UNIMEM, and for
which UOM has developed an emul ation | ayer t
library. Furthermore, to mimize the overheads incurred by memory transfers between nodes,
UOM has developed locali#gware allocation and scheduling optimizations that deliver above

94% locality and up to 99% locality and 5x speedup over hierarchicalsteakng on 24
noded14]. While this study was conducted on a classical NUMA machine, the results are likely

to translate into similar locality benefits, albeit with new tradeoffs that will require further
investigation, on an ExaNoDe platform once ported.

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel2of 37

[3%INeDe
3 Communicaties Librar.i

Two communication libraries, the message passing MPI and the partitioned global address
space library GPI, will us&JNIMEM. Compared to the runtime systems the Hmi@ie
communication with th&JNIMEM communication will be explicit. Thus a direct coupling
between MPI/GPI components adtlIMEM becomes centestage in this section. For GPI the
focus is on onsided asynchronous messages, whereas the MPI work will be foucessed on
message passing.

3.1 GPI
This section was contributed BHG.

3.1.1 Introduction to GPI

The Fraunhofer GPl (Global Address Space Programming Interface)-sopese
communication librarys an implementatiorf the GASPI standarfl6], freely available to
apgication developers and research&#aSPI stands for Global Address Space Programming
Interface andit is a Partitioned ®&bal Address Space (PGAS) API thansto provideextreme
scalability, high flexibility and failure tolerance foagallel computig environments.

GASPI aims to initiate a paradigm shift from bgichronous twaided communication
patterns towards an asynchronous pamication and execution model.l#veragesemote
completion and onsided RDMAdriven communication in a PartitiodeGlobal Address
Space. The asynchronous communicagoablesa perfect overlap between computation and
communication. The main design idea of GASPI is to have a lightweight API ensuring high
performance, flexibity and failure tolerance. More details calb GPI can be found in
deliverable D3.1 or on the GPI web pag#gd://www.gpisite.com/gpi2).

3.1.2 Exploiting UNIMEM in GPI

GPI Building Blocks for ExaNode

|| Segments Runtime Environent T

- 5

°

§ — Global Atomics Groups §_

2 2

o [Passive RDMA £

£ £

o . ¢

£ [Collectives £

.E 'g
= Hio Queues

Figure 7: Pl Building blocks for ExaNoDe architecturesupport

The UNIMEM independent modules (Runtime Environment and GPl Groups) can be
developed/ported without any knowledge of the final hardware characteristics and interface
descriptions of the ExaNod¢NIMEM architecture Both modules are able to run ova
secondary network using TCP/IP for data exchange. This makes it possible to start early
implementations of these components within the ExaNpBgect. The communication

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel3of 37

http://www.gpi-site.com/gpi2/

[3INoDe

interface for these modules will be RDMA over Sockets, one of the transport lafyers
UNIMEM.

Both independent modules have now been ported to the aarch64 architecture and can used on
top of sockeinterfaces ofJNIMEM.

All UNIMEM -dependent modules, such as pinned memory segments, global atomics (and
related memory areas), passive RDMallectives and onsided reads and writes managed by
IO-queues are hard to implement without detailed knowledge of the behaviour of the
interconnect interface. Therefore an emulation library has been developed that implements most
of the current functinality asdescribed irf17]. This emulation library allows early tests on a
standard x86_64 SMP system without the need to have real prototype hardware available on
site. The remote system provided has proven not to be stablggh to run integration tests.

All dependent modules have been implemented on top of the emulation framework and early
tests were successful.

Some design decisions made by Forth for the leset RDMA Interface otUNIMEM will not
allow GPI Applicationgo run directly on this layer without «®mpilation and reoding. In
addition to that, the prototype systems and the availdNI&EM libraries are not yet stable
enough for developments like GPI or practical tests and benchmarks. To ensukedtkatg
GPI version for the ExaNoDe architecture is ready at the end of the projécyeportedhe
dependent GPI Modules from our emulation framework to the socket lay#MIMEM . At
the current stage of the project it is crucial to be able to start gpiHere further work on
UNIMEM needs to be done (as pointed out in Sec3idna

This workaround allows us to further improve the individual-SBbmodules and ttontinue

the developing process without timensuming delays(Erreur ! Source du renvoi
introuvable.). A running GPI communication library is the basis for the development ef one
sided micro benaharks and minapplications on top of the ExaNoDe hardware.

GPI Runtime (Sub-Modules)

__| Segments
©
c
Q
T |— Global Atomics
&
2 [— Passive RDMA
£
@ i
£ |—1 Collectives
.g
— 10 Queues

Sockets over Unimem

Hardware

Figure 8: GPI Building Blocks of UNIMEM

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel4 of 37

[3%INoDe

3.1.3 Design of preliminary software implementation

The following subchapters are describing the implementationdependent GPI Modules
(Erreur ! Source du renvoi introuvable) on top ofUNIMEMSs socket layer.

3.1.3.1GPI Segments

GPI Segments can be created and deleted by using standard system routinesnii&éfoe.g.

and free. There are no size or alignment constraints on these segments as we have today with
RDMA memory segments on most other interconnects. The allocation time will also be fast as
we can use copy on write (cow) mechanisms compared tpiqmed continuous memory
segment allocations.

3.1.3.2GPI I0-Queues

GPI applications trigger orgided RDMA reads and writes by placing communication tokens

into GPI I0-Queues. The status of a single token or a group of tokens can be determined at any
time by calling await operation on a given queue. The wait operation returns a status array
filled with the status of all completed read and write operations at that time. To enable non
blocking functionality for all worker threads within posting and wait calls, a backdrou
communication thread will be spawned internally. This special thread takes care of all the
ongoing communications on all GPI queues and fills up the status arrays. As the communication
takes place on top of sockets, the thread does not have to potbfeerations or completions.

The operating system can schedule this thread when data can be sent or peer data have received
for one of the active queues.

3.1.3.3GPI Collectives

In a first design GPI Collectives can be implemented by using internal GPl Segmen@
Queues as described in Sect®is3.1andErreur ! Source du renvoi introuvable3.1.3.2

3.1.3.4GPI Global Atomics

GPI currently defines two operations for Global Atomics: Atomic increment and atomic
compare and swap (®ga With these two atomic operations in place, global spinlocks can be
implemented which can be used to protect global-slatectures and variables. As the current
semantic for GPI Global Atomics require the immediate return of the previous valuesidstanda
I0-Queues cannot be used due to the separation of posting and wait calls. Instead a special 10
Queue will be implemented internally for atomics that combines and interlocks the posting and
wait calls.

3.1.3.5GPI Passive RDMA

Passive RDMA operations cannot bdly offloaded. They need some support from the
Operating System so that passive waiting (sleeping) processes/threads can be informed when
matching communication data is available. To implement this kind of data transport a special
passive IGQueue as dedbed in 3.1.3.2 will be implemented. For this specialQ@eue the
background thread will not fill up any completion arrays. Instead it will trigger one of the
system calls like select, poll or epoll to inform waiting worker threads (waiting in
GPI_PASSINE_RECEIVE) about available data. The location, status and size of the data is
returned to the caller directly from GPI_PASSIVE_RECEIVE.

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel5of 37

[5%NeRe
3.1.3.6Parallel Process Startup

A parallel startup mechanism like mpi_run or gpi_run is still not available yet and standard
tools and scripts (e.g. process startup via ssh) cannot be usetliMEM. UNIMEM -
Processes need to have some kind of parenild relationship to inherit access rights to
memory segments. In addition, environment settings/variables and command linerasgume
must be communicated to the remote node and setup correctly before a process inside a parallel
topology can start. Here we are still in the process of defining an interface that fulfills the
requirements for GPl and MPI to start up remote processes.

3.1.4 Suitable ExaNode Mini-app

Beside the GPI test suite a stencil kernel applicgganh as an BQCD simplified kernai)ll
be implemented tdemonstratéhe strength of overlapped and offloaded data communication
on ExaNoDeJNIMEM.

3.1.5 Current Status and Limitations

Current Unimem Limitations for singlsided Commmunication (GPR) are

1 Single memory segment: all GBPlased applications are using at least two or more memory
segments during runtime to switch between communication buffers and computation
segmentgdouble buffering approach for asynchronous progrants$ limitation has been
present in the emulation library but is resolved in the UNIMEM software and still needs to
be tested.

1 Size limitation of the memory segment: 256mb. This size is much too femedial world
applications which typically use up to 16GB to 32GB per nodming overlapped
computations and communications.

1 Single communication channel: at least two communication channels are needed to
implement overlapped communication: One to mostent IGoperations on and another
one to poll for previous posted 1@perations as described above.

1 Size limitation per IGoperation: 8mklbyte: for large communication sizes this will
produce a lot of overhead (severaldPerations)Stencil code algrithms might be able to
run on such a system without any changes, however especially modern machine learning
applications might need to use-862MB.

1 Single RDMA status request: it would be much more efficient to request the status of an
array of communiatiorridentifier at once. Single RDMA status requests produce a lot of
context switches and other overhead.

1 The RDMA functionality should be implemented mostly in userspace and not in
kernelspace.

1 Atomic operations in UNIMEM cannot use the same memory satsras RDMA 10
operations. Since most of the GPI based applications run atomics and RDMA operations
out of the same memory segment, this limitation does not alloveqgmpiled GP42
binaries to run on top of UNIMEM.

1 Atomic operations on UNIMEM need somidand of relationship between affected
processes. Accegskens are distributed over a special startup mechanism which is not
compatible with mpi_run or gpi_run. Here a startup procedure similar to mpi_run or gpi_run
is needed to establish a working envirant like on any other computing system today.

1 The remote UNIMEMprototype systems are not yet stable enough to do intensive tests. To
get significant performance data for evaluatia stable UNIMEMenvironment is needed.

The above mentioned limitations will be discussed with the FORTH group.

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel6 of 37

[3*INoDe

Figure9 andFigure 10 show first measurements on the remote UNIMEM prototype, namely
the GP42 bandwidth and latencythe data have been taken ihve TRENZ board with the
UNIMEM software stack (kernel driver and u$evel library). For the latency and bamdth
measurement for each measured point the average of 1000 samples has been taken. For latency
a classical pingpong mechanism was employed, completion time is the time that the pong has
been received. For the bandwidth measurement the completiondrasitpealled by a signal
received by UNIMEM.The datavaluesare consistent with the values reportedhe MPI
implementationn Section3.2.3 However our measamens start with smaller message sizes.

The latency and bandwidth can be compared with measurements taken with Infiniband FDR a
few years back both for GRI(and MVAPICH21.9). The plots can be found tite GPI web

pagé . The bandwidth for Infiniband FR sdurates at messages sizes about 4kbgtes
bandwidth of 6000 MB/s. The bandwidth is about a factor 50 higher than measured on the Trenz
board. The latency of small messages with Infiniband FDR is about 1microsec for 2bytes up to
about 2microsec forkbytes. This is about a factor of 250 faster than the latency measured with
GPI over UNIMEM on the Trenz board. Further optimized capabilities with the GPI
implementation are going to be implemented during the coming months.

Bandwidth - Unimem

120

100 -

80 -

60 -

40 -

Bandwidth (MB/s)

20 -

GPI-2 ——
0 | I | | | | | I

2b 16b 64b 256b 1K 4K 16K 128K M 4 MB

Size (bytes)

Figure 9: GPI-2 bandwidth on UNIMEM Prototype system (Sockets over Unimem)

1 GPI web page:http://www.gpi -site.com/gpi2/benchmarks/

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel7 of 37

[3'INoDe

Latency - Unimem

600 I T T
GPI-2 ——

550 -

500

450 -

400

Latency (us)

350 -

300 -

250 t t t t T
2 4 8 16 32 64 128 256 512 1K 2K

Size (bytes)

Figure 10: GPI-2 latency on the UNIMEM Prototype system (Sockets over UNIMEM)

3.1.6 FPGA Prototype System

The Exanode System drags it compute performance deeltkProgammableGateArrays
(FPGA) to be competitive with staté-the-art architectures configured with e.g. GPUs or other
Accelerators. We are currently in the phase of setting up a smad/stetn consisting of Xilinx
Ultrascale+ FPGAs and ARM 64bcores in one package. This platform will be used to
implement a GRInterface that is able to offload compute kernels to the FPGA and to monitor
the external program execution. We will also evaluate different development environments for
theseFPGAKkernds to be able to select the best workflow that integrates optimal into the GPI
Build-Environment.

3.2 MPI

BSC has proposed to the Consortium that the-lagal architectural design of the MPI port
over UNIMEM should lie on the recentigmerged OpenFabrics Interfaces (BF8n open
generic lowlevel networking standard for HPC. This is in accordance with current efforts in
the major MPI implementations (Intel MP1, MPICH, Open MHIlhe effort is performed to
overcome the welknown performance limitations of TCP, so we expect to improve upon an
MPI over TCP implementation and, when finished, offer minimal overhead with respect to
direct use of UNIMEM.

3.2.1 State-of-the-Art MPICH

Currently MPICH, the MPI implementatn decided to be the primary target in this project, is
undergoing a major code rewriting on its Channel layer, moving from CH3 to the new CH4,
with major improvements on scalability and latency. Part of this effort is aimed at better
exploiting HPC netwding capabilities, by providing full communication semantics to the low
level network interface. This enables highly efficient MPI communications on top of OFI.
Currently in alpha 2 version and already passing most of the wide MPICH test suite on x64

2 https://ofiwg.github.io/libfabric

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel8of 37

[3INoDe

archtectures, a stable release is foreseen to be announced in November 2017 during the SC17
conference.

3.2.2 MPI over UNIMEM Architecture

BSC is developing an OFI port (calHgeella #Apr c
shows the major higlevel architectuda components of the statd-theart MPICH
implementation described in the above section, and the light blue box represents the main
component that BSC is developing: the UNIMEM OFI providégure 12depicts a future

more optimised implementation of thiNIMEM version of MPI, with optimised collective
communications that extend the OFI API. At this point there is no expectation of having to
modify any layers of the MPI stack above OFI.

Developing an OFI provider instead of an integrated solution hasdventage that the
UNIMEM OFI provider may be usable by other MPI implementations and potentially even
other runtimes implementing the OFI API. BSC is currently targeting development under
MPICH because of its current knewow and established contacts witie developing group,

and the portability premise will be checked using Open MPI on a more advanced stage.

[

Figure 11: Stateof-the-art MPICH Figure 12: Future optimized
design, showing UNIMEM OFI UNIMEM MPI implementation
provider with overriding collectives

3.2.3 Development Approach and Current Status

For practical reasonsather than starting the implementation of the UNIMEM OFI provider
from scratch, BSC chose to start development based on the OFI TCP/sockets provider, and
progressively replace TCP/sockets communication with communication over the native
UNIMEM API. This allows incremental development, with full functionality always provided

by TCP/sockets, while taking advantage of improved performance for the featurbaubat

been optimized natively over the UNIMEM API.

Currently the OFI provider is able to transfer MPI_Send data payloads over native UNIMEM.
Discussions between BSC and FORTH resulted in improvements to the UNIMEM/AEh
will benefit MPI and the otheuntimes/communication libraries

(1) Until July 2017 the prototype providionly a single buffer allocation registered with
the communication hardwardhis was fixed in July 2017, and the change was
communicated poirto-point to the engineer at BSC whtre issue was discussed at
the end of August 2017 his will improve performance fdviP1 and the other runtimes

Project No. 671578 ExaNoDe Deliverable D3.2 Pagel9of 37

[3INoDe

and communication libraries blye end of the project, but the change arrivedateoto
incorporate into the codebase discussed in this dabie

(2) The previous version of the UNIMEM API, which was based on the cDMA hardware
block, hadno memory registration API, which prevents registering -psevided
memory buffersAn updated version of the API takes advantage of new features of the
zDMA hardware block on the UltraScale+ Sothis changes the semantics of the
UNIMEM APIs, and the more powerful APIswill result in a zerecopy MPI
implementationjmproving MP1 usability and potentially performancéhis requires
some redesigof the UNIMEM OH provider to take advantage of the new AHIsis
does not affect the schedule for delivery of the final optimized MPI library by M36.

These limitations are undeontinuingdiscussion with FORTH. In addition, there are still
issues with the stability dhe remote UNIMEM prototype. To get significant performance data
for evaluation, a stable UNIMEM environment is needed.

3.2.4 Preliminary results

Figurell andFigure12 show our first performance results on the Juno prototype, comparing
the use of MPICH over an OFI TCP provider with our prototype of the UNIMEM OFI provider
(note that TCP support is in tunmplemented over UNIMEM). To avoid system noise, every
measurement represents the average of 50 fsinchessage exchanges. These experiments
are executed 30 times and the average is represented.

Figure 11 shows roundtrip latency for small message sizes. We can see that the pure TCP
sockets provider exposes in general lower latency than our-dedelopment UNIMEM
provider. We expect to overcome this limitation oneemove from TCHased notification to

using the Mailbox functionality for this purpose. The figure shows that this penalty is overcome
by the much faster data payload transfers for sufficiently large transfers, starting at 128 KB. We
have not yet identifid the reasons for the high latency exposed by the TCP provider at 1 KB
data payload.

3.5

w

N
ol

N

Round-trip latency (msec)
(@] =
o ko,

o

1K 2K 4K 8K 16K 32K 64K 128K
Message size (byte)

—l—socket ——unimem

Figure 11: Roundtrip latency for small message sizes.

Figure12 shows onewvay throughput (defined as 1 / roundtrip latency * 2) for large message
transfers. We can see how TCP flattens at 100 MB/s with a 2 MB data payload while the
UNIMEM provider is constently over 3x faster, yielding up to about 370 MB/s. Note that
TCP implementations over loievel highperformance networking APIs are widely known to

Project No. 671578 ExaNoDe Deliverable D3.2 Page20 of 37

Exalyio

pose significant overheads due to factors such as additional memory copies, context switches
to Operaing System kernel calls, and the intrinsics of the TCP protocol itself.

400

350
300

\

250
200
150

100 O B O = B a
50 ./.
1M 2M 3M IM 5M 6M ™ 8M
Message size (byte)

Throughput (MB/s)

—l—socket ——unimem

Figure 12 Throughput for large data payloads.

In summary, the preliminary UNIMEM implementation of MPI has higher latency than the
baseline MPI over sockgtfor small messages, but this penalty is overcome for messages larger
than about 64 KB). The preliminary UNIMEM implementation achieves greater than 3x the
bandwidth for messages over about 2 MB, reaching 370 MB/s.

We have not yet been able to underdttre precise reasons for the excessive latency, but we
intend to improve the implementation using the new version of the UNIMEM RDMA API,
which makes use of ttEDMA hardware block, and has slightly different semantics (providing
userlevel initializationof RDMA transfers), which will avoid the need for the MPI library to
allocate specific buffers for RDMA transfers, enabling a zeqy implementation. This will
improve performance but it potentially requires major modifications to the MPI
implementation We will also makeuse of the Mailbox API. This is expected provide a
complete and higiperformance OFI provider on top native UNIMEM only, covering the entire
MPI 3.1 Standard.

3.3 Further Requirements of the runtimes and communication
models on the underlying platform

The runtime systems and programming models have specified their requirements on the
underlying UNIMEM system in their respective sections. Here we collect the list of
requirements:

3.3.1 Requirements of OmpSs

OmpSs will use the underlying MPI pragnming model which will then connect to UNIMEM.
Therefore the requirements of OmpSs itself within the ExaNoDe project on UNIMEM are
modest, however the MPI requirements need to be incorporated.

Project No. 671578 ExaNoDe Deliverable D3.2 Page21 of 37

[3%INoDe

3.3.2 Requirements of OpenStream

T
T

OpenStream uses UNIMEM directljjo work efficiently OpenStream requires the support

of RDMA and atomics by UNIMEM.

For OpenStream it is important to be able to test on lamgadvancetardware systems

to study the impact of UNIMEM on the OpenStream work stealing algorithm whidnesns

load balancing. OpenStream expects that an asymmetry can occur due to the success rates
of local and remote atomic operations. OpenStream will complement thesteading
algorithms by sending tasks that require remote data to be executed on thexdmost

of their inputs aréocated to reduce communication overall.

3.3.3 Requirements of GPI

T

Single memory segment: all GPlased applications are using at least two or more memory
segments during runtime to switch between communication bufferscamgutation
segments (double buffering approach for asynchronous programs). This limitation has been
present in the emulation library but is resolved in the UNIMEM software and still needs to
be tested.

Size limitation of the memory segment: 256mb. Thze $6¢ much too small for real world
applications, which typically use up to 16GB to 32GB per node, doing overlapped
computations and communications.

Single communication channel: at least two communication channels are needed to
implement overlapped commigation: One to post current {@perations on and another

one to poll for previous posted {@perations as described above.

Size limitation per IGoperation: 8milbyte: for large communication sizes this will
produce a lot of overhead (severaldPeratios). Stencil code algorithms might be able to

run on such a system without any changes, however especially modern machine learning
applications might need to use-862MB.

Single RDMA status request: it would be much more efficient to request the stains of
array of communicatioidentifier at once. Single RDMA status requests produce a lot of
context switches and other overhead.

The RDMA functionality should be implemented mostly in userspace and not in
kernelspace.

Atomic operations in UNIMEM cannot ugke same memory segments as RDMA 10
operations. Since most of the GPI based applications run atomics and RDMA operations
out of the same memory segment, this limitation does not alloveqmpiled GP42
binaries to run on top of UNIMEM.

Atomic operationson UNIMEM need some kind of relationship between affected
processes. Accegskens are distributed over a special startup mechanism which is not
compatible with mpi_run or gpi_run. Here a startup procedure similar to mpi_run or gpi_run
is needed to estabh a working environment like on any other computing system today.

The remote UNIMEM prototype systems are not yet stable enough to do intensive tests. To
get significant performance data for evaluation, a stable UNIMEM environment is needed.

3.3.4 Requirements of MPI

T
T

MPI requires more than a single buffer allocation registered with the communication
hardware to be able to provide a ltatency zerecopy approach.
MPI requires a memory registration API to be able to registerpuegided segments.

Project No. 671578 ExaNoDe Deliverable D3.2 Page22 of 37

[3INeDe
3.4 Suitable ExaNoDe Mini-apps

All ExaNoDe miniapps considered in D2(Report on the ExaNoDe miapplications)[18]

are either implemented in MP1 or they have MPI versions: Abinit, BQCD, HydroC, KKRnano,
MiniFE and NEST. The four chosen applications (BQCD, HydroC, KKRnano and MiniFE) are
therefore suitable for evaluation of the MPI port. Moreover, the MPI port wdelveloped in
consultation with the application partners of ExaNeSt and will be made available to them for
implementation and performance evaluation using production scientific applications, in
particular those from INAF and INFN.

Project No. 671578 ExaNoDe Deliverable D3.2 Page23of 37

[3%INeDe
4 Power and t hrerl mal cont

Building on the definition of the thermal capping optimal paliee focused on the realization
of the power capping problem which ease the need of extracting the thermal model from the
target architecture.

Several approaches in the literature hgreposed mechanisms to constrain the power
consumption of largecale computing infrastructures. These can be classifiedvwwo main
families. Approaches in the first class use predictive models to estimate the power consumed
by a job before its executio At job scheduihg time this information is used @low intothe
systemjobs that satisfy the total power consumption budget. Hardware power capping
mechanism like RAPI(Running Average Powerimit)are used to ensure that the predicted
budget is respeed during all the application phases and to tolerate prediction errors indhe job
averagye power consumptiagstimatior{19] [20] [21]. Approaches in the second class distribute

a slice of the total system power budget to eadive computing element. The peompute
element power budget is ensured by mean of hardware power capping mechanism like RAPL.
The allocation of the power consungpt budget to each compute nodes can be done statically
or dynamically[22] [23] [24]. It is goal of the ruftime to trade off power reduction with
application performase loss. GEOPM implement a plugin for power balancing to improve
performance in power constraint systems reallocating power on sockets involved in the critical
path of the application.

Authorsin [25] quantitativelyevaluated RPL as a control system in term of stability, accuracy,
settling time, overshoot, and efficiend@heyevaluate only the proprieties of RAPL mechanism
without considering other power capping strategies and how can vary application workload.

Stateof-the-art mechanism relies oa hardwaremechanism to directly control the power
consumption. In the ExaNoDe architecture this feature is not present and as consequence we
constrain the power consumption by directly controlling the frequency of the tortee
following section, we focus on the comparison with stdtéthe-art related work, which has

been done on an Intel platform, in order to compare with Intel RAPL.

4.1 HPC Architectures

HPC systems are composed of tens to thousands computational nodes iatdéecbmith a
low-latency highbandwidth network. Nodes are usually organized industers allocated at
execution time from the system scheduler according to the user requestuSals have a
limited lifetime, after which resources are released @ disstem scheduler. Users request
resources through a batch queue system, where they submit applications to be executed. Even
a single node can be split in multiple resources shared among users. The single indivisible units
in a HPC machine are CPU, memanyd possibly accelerators (GPGPU, FPGA, Meore
accelerator, etc.).

HPC applications typically use thg8ingle Program Multiple Data (SPM@xecution model
wherethe same application executable is instanced multiplestonedifferent nodes of the
clusier, each instance works on a partition of the global workload and communicates with other
instances to orchestragabsequentomputational steps. For this reason, a HPC application can

be seen as the composition of several tasks executed in a distrdnwieonment which
exchanges messages among all the instances. Achievingdrigmimance communication on
distributed applications in large clusters is not an easy task. The Md&ssgjag Interface

(MPI) runtime responds to these demands by abstradtmdetvel of network infrastructure

using a simple but higherformance interface for communication that can scale up on
thousands of nodes.

Project No. 671578 ExaNoDe Deliverable D3.2 Page24 of 37

[3%INoDe

HPC machines are extreme energy consuraeadserver rooms require a proportioned cooling
system to avoid overheaf situations. The extreme working conditionsthis kind of
machines brings a lot of inefficiencies in terms of energy and thermal control, that turn in
computational performance degradation. Hardware power manager becoming a
fundamental taontroling power utilization using different strategies to reduce energy waste
and, at the same time, assure a Hafemal environment.

4.2 Power Management in HPC Systems

Nowadays, operating systems can communicate with different hardware power managers
through aropen standard interface called Advanced Configuration aweHaterface ACPI)

[26]. In thiswork, we focus on ACPI implementation of Intel architectwiacemost HPC
machines(more than 86%in [27]) are based on Intel CPUs. Intel implemeritee ACPI
specification defining different component states which a CPU can use to reduce power
consumption. Today's CPU architectures are composed of multiple processing elements (PE)
which communicate thr@h a network subsystem that interconnect PEs, Last Level Cache
(LLC), Integrated Memory Controllers (IMC) and other uncore components. Intel architecture
optimizes ACPI using different power saving levels for cores and uncore components. The
ACPI standardiefines Pstates to select DVFS operating points targeting the reduction of active
power, while defines tates the idle power levels. In our work, we consider ordiaies to
manage DVFS control knob, this because HPC applications do not manifeghaliéuring

the execution.

Intel P-States show ifrigurel3, definnga number of | evels which ar
indo whmwor @ sii t he | o we si$ thefhighest ilequercy witlathedpossikllity to

take advantage of Turbo Boost technology. Turbo Boost is an Intel technology that enables
processors to increase their frequency beyond the nominal via dynamic control of clock rate.

The maximum turbo frequey is limited by the power consumption, thermal limits and the
number of cores that are currently using turbo frequency. Since Haswell, Intel cores allow
independent pecore RState.

2.4

1 GHz
2.1

Power (W)

Pn P3

Core Voltage (V)
Figure 13: DVFS mechanism

Intel Power Management Driver: Intel RStates are managed by a power governor
implemented as a Linux kernel driver. By default, on Linux system, Intel architectures are
managed by a kernel modul e called Aintel ps
Integrdi Derivative (PID) feedback controller. The PID controller calculates an error value

every 10ms as the difference between a desired setpoint and the measured CPU load in that
period. The PID controller acts to compensate this error by adaptingStadvalue.

The PID internal parameters are defined with default values by the Intel driver but can be
customized byhe system administrator.

Project No. 671578 ExaNoDe Deliverable D3.2 Page25 of 37

[3*INoDe

Il nside Aintel _pstateo driver only two gover:
Aper formanceo. eWedetaiithe bperations of thess goveindrs because it is
outside the scope of this work, but from a
mai ntains the CPU at maxi mum frequency whil
depending of the machn e wor k|l oad. Hence, i

power saveo
[

efficiency while Aperformanceodo tries to achi

energy consumption.

Linux Power ManagementDriver. The Ai ntel pstat eaverndrithaty er dc
allows users to select peore fixed frequency. Differently, the default power management
driver ofcpufhnegdadcepes it.

Aaeppiufreqgodo i s similar to Intel driver but in

different algoithms. The available governors are:

1. Powersave this governor differently from Intel driver, runs the CPU always at the
minimum frequency.

2. Performance runs the CPU always at the maximum frequency.

3. Userspaceruns the CPU at user specified frequencies.

4. Ondemand scales the frequency dynamically according to current load. It is equivalent
t o t he 0 govewerofdntehvdevel28].

5. Conservative similar to ondemand but scales the frequency more gradually.

Inourwork, weu se fAuserspaceoO governor to select fi
benchmarks.

3
4

4.3 Hardware Power Controller

Package Power Plane

Dram Power Plane

Memory DIMM 3
—
Memory DIMM 4
_ — —

Memory DIMM 2
—_— — —
Memory DIMM 5
— —— —
Memory DIMM 6
Memory DIMM 7

Memory DIMM 1

(=
=
=
[=)
=
<)
£
7]
=

I Last Level Cache
Dram Controllers

. PPO/CORE Power Lane

.I PP1/Graphic Power Lane I

Figure 14: RAPL power domain

Today's CPU architectures implement reactive hardware controller to mahegimocessor
always under an assigned power budgke Rardwarecontroller ties to maximize the overall
performance while constraining the power consumption and maintaining a safe silicon
temperature. Intel architectures implement in its CPU a hardp@ser controllerRAPL

Project No. 671578 ExaNoDe Deliverable D3.2 Page26 of 37

[3%INoDe

depicted inFigure14. RAPL is a control system, which receives as input a power limit and a
time window. As consequent, RAPL continuously twitiee Pstates to ensure that the limit is
respected in the specified time window. RAPL can scale down and up core's frequencies when
the power constraint is not respected overriding the seleestatds. RAPL power budget and
time window can be configudewriting a Machine Specific Register (MSR) on the CPU.
Maximum and minimal values for both power budget and time window are specified in a read
only architectural register. Values for both power and time used in RAPL are represented as
multiple of a refeence unit contained in a specific architectural register. At the machine start
up, RAPL is configured using thermal design power (TDP) as power budget with a 10ms time
window. RAPL also provides 32bit performance counters for each power domain to monitor
the energy consumption and the total throttled time. RAPL implements four power domains
which can be independently configured:
1. Package Domain this power domain limits the power consumption for the entire
package of the CPU, this includes cores and unampaonents.
2. DRAM Domain: this power domain is used to power cap the DRAM memory. It is
available only for server architectures.
3. PPO/Core Domain is used to restrict the power limit only to the cores of the CPU.
4. PP1/Graphic Domain is used to power limibnly the graphic component of the CPU.
It is available only for client architectures due Intel server architectures do not
implement graphic component into the package.
In the experimental result section, we focus our exploration on the package domaiRLof R
controller because core and graphic domains are not available on our Intel architecture.
DRAM domain is left for future exploration works. We also tried to modify the time windows
of package domain (which can be set in a range of 1ms to 46ms ingeirdgstem) to see its
impact on application performance.
Our results show that this parameter does not lead to noticeable changes in the results obtained.
For this reason, we report results only for the default 10ms time window configuration.

4.4 Architecture Target

In this work, we take as architecture target aghformance computing infrastructure, which

is a Tierl HPC system based on an IBM NeXtScale cluster. Each node of the system is
equipped with 2 Intel Haswell EB630 v3 CPUs, with 8 cores with42GHz nominal clock

speed and 85W hiermal Design PowerTDP, [29]). We selected this target system as it
contains all the power management features (RAPL, per core DVst&tes) of future HPC
computing nodes and can be ussdreference for future ARM sfems.

Quantum ESPRESO (QE)[30] is an integrated suite of computer codes for electrsiniccture
calculations and materials modelling at the nanoscale. It is an open source package for research
in molecule dynamics simulations and it is freely available to researchers around the world
under the terms of the GNU General Public License. Quantum ESPRESSO is commonly used
in highrend supercomputers. QE main computational kernels include denselparshar
Algebra (LA) and 3D parallel Fast Fourier Transform (FFT). Moreover, most of application
workload is based on LA and FFT mathematical kernels which makes our exploration work
relevant for many HPC codes. In our tests, we use aPaainello (CP)simulation, which
prepares an initial configuration of a thermally disordered crystal of chemical element by
randomly displacing the atoms from their ideal crystalline positions. This simulation consists
of a number of testhatmustbe executed in theocrect order.

4.5 Monitoring Runtime

We developed a monitor runtime to extract system information synchronously with the
application flow. The runtime is a simple wrapper of the MPI library where every MPI function
of each process has been enclosed by angejgland a prologue function. We used the MPI

Project No. 671578 ExaNoDe Deliverable D3.2 Page27 of 37

[3INoDe

standard profiling interface (PMPI), which allow us to intercept all the MPI library functions
without modify the application source code. The runtime is integrated in the application at
linked time. Hence, thiRuntime can extract information distinguishing applicatoa MPI
phases as shows kigure 15. The monitor runtime usdew-level instructiongo access the
Performance Monitoring Unit (PMUyith low overheadWe programmed pesore PMU
registers to monitor frequency, CPI, and scalar/vector instructions retired. The monitor runtime
can intercept a very high number of MPI calls of the application

0 |
B Arp MPI § Synchronization

PO

Pn

" Time

Figure 15: Monitor runtime

4.6 Methodology

We run QE CP with a configuration of 16 MPI processes with a-tmmene bind to each core

of our HPC node. We start by comparing different configurations of power capping in our test
environment. Irtially, we split the power budget in an equal manner on both sockets, we set
power consumption limit o8 W on each socketor a global power envelgonf 96 W. This

test shows thahe core's frequencies on different sockets are heterogeneous, sugdesti

the two sockets have different inkdr power efficiency. To have the same frequency among
all the cores, the tested computing node needs of 11.3% higher power on socked 0. As
consequece of this result, we run a set of benchmarks fixing the stewuency for all the
cores while monitoring the power consumption of each socket. We use Hsisgbet power
budget as power constraint to obtain the same frequency among all the cores. We execute again
the tests using RAPL to impose these gmrket pwer caps and leave RAPL decides the actual
frequency.

Power Frequency Execution Time
DVFS RAPL DVFS RAPL DVFSvs RAPL | DVFS RAPL | DVFS vs RAPL
1.5GHz | 95.56W | 94.81W | 1499MHz | 1766MHz -15.11% 311.43sec | 328.16sec 5.10%
1.8 GHz | 111.86W | 110.63W | 1797MHz | 2144MHz -16.22% 274.11sec | 274.42sec 0.11%
2.1GHz | 122.87W | 120.71W | 2094MHz | 2323MHz —9.86% 247.60sec | 254.59sec 2.75%
24 GHz | 134.44W | 131.32W | 2392MHz | 2476MHz -3.37% 231.19sec | 239.65sec 3.53%

Table 2: Quantum ESPRESSO- Power Capping

Project No. 671578 ExaNoDe Deliverable D3.2 Page28of 37

[3%INoDe

Table 1 shows the results of our set of experiments using different levels of power caps.

In the first column, there are reporttte target frequencies used to extract the power limits
specified in the second column. Second and third columns show the sum of power consumption
of both sockets using DVFS and RAPL mechanisms for power capping. We can see that the
power consumption is éhsame, so the power cap is respected and the tests are comparable. In
the frequency columns are reported the average frequencies for the entire application and
among all the cores. These columns show that RAPL has an average frequency of 11.1% higher
thanDVFS but, if we look at the execution time (reported in next columns), DVFS has a lower
execution time, in average% faster than RAPL.

In the next sections, we will explore why DVFS power cap has a lower execution time respect
to RAPL which, in contrashas a higher average frequency.

4.7 System Analysis

Figurel6shows a time window of the systeamware monitoring tool for both the power capping
mechanisms while QECPiterates on the same computational kernel. The test reports the case
of a power constraint relative to 1.5 GHz for DVFS and RAPL power cappers. So, the results
are comparable directly.

Figure 16: Comparison of DVFS and RAPL (Time window of 50 seconds)

First, we can check the correct behaviors of power capping logic by looking at the core's
frequencies and package power consumption (first two top plots). In the DdtF&ghe left

part of Figure 16, core's frequencies are fixed at 1.5 GHz while package power consumption
floats around the average value as effect of the different application phases. In contrast, RAPL
(on the right) maintas constant the power consumption for both the sockets while core's
frequencies changes following the current application phase. Table 1 reports a similar average
power consumption for both the two cases, thus the power cappers are working as expected.
Both benchmarks show a lower CPI when the memory bandwidth is low and SIMD instructions
retired are high. In these phases, RAPL has lower frequency than the DVFS case as effect of
the higher power demand of SIMD instructions. On the other hand, RAPL a$sijres
frequencies than DVFS when CPl is high and this happens when the application is moving data
from/to memory as proved by the high memory traffic/bandwidth reported by the "Mem Ch

[GB/ s] 0 plot. I n these phasesrelowehaad asalredadye r o f
pointed out and shown in the RAPL plot, the core's frequencies selected by RAPL increases
above average due the higher power budget. However, increasing core's frequencies when the
application is memory bound does not reflect soasequent performance gain due the higher

CPI and sulinear dependency of application spagawith frequency in these phases.

Project No. 671578 ExaNoDe Deliverable D3.2 Page29 of 37

