

Project No. 671578 ExaNoDe Deliverable D3.2 Page i of viii

D3.2

Runtime systems (OmpSs, OpenStream) and

communication libraries (GPI, MPI): Advanced

implementation customized for ExaNoDe architecture,

interconnect, operating system

Workpackage: 3 Enablement of Software Compute Node

Author(s): Valeria Bartsch, Carsten

Lojewski

FHG

 Antoniu Pop UOM

 Paul Carpenter, Babis Chalios,

Antonio J. Peña, Kyunghun Kim

BSC

 Andrea Bartolini, Francesco

Conti

ETHZ

Authorized by Paul Carpenter BSC

Reviewer Paul Carpenter BSC

Reviewer Giuliano Taffoni INAF (ExaNeSt

WP2 Applications

lead)

Reviewer Manolis Marazakis FORTH

Dissemination

Level
Public (PU)

Date Author Comments Version Status

2017-07-18 Antonio Pena Initial MPI Version added V0.1 Draft

2017-07-21 Carsten

Lojewski

GPI Version added V0.2 Draft

2017-08-28 Babis Chalios,

Antonio Pop

OmpSs, OpenStream and parallel

runtime support section added

V0.3 Draft

2017-08-30 Antonio Pena Updated MPI version, including

measurements

V0.4 Draft

Project No. 671578 ExaNoDe Deliverable D3.2 Page ii of viii

2017-08-31 Andrea

Bartolini

Power Management added V0.5 Draft

2017-09-06 Valeria Bartsch Executive Summary, Introduction,

Concluding Remarks added

V0.6 Final

2017-09-26 Paul Carpenter,

Giuliano

Taffoni,

Manolis

Marazakis,

Antoniu Pop,

Valeria Bartsch,

Paul Carpenter,

Antonio Pena,

Andrea

Bartolini

Reviewerôs comment and suggestions

added

V0.7 Including

some of

the

reviewers

comments

Project No. 671578 ExaNoDe Deliverable D3.2 Page iii of viii

Executive Summary
In this deliverable, we describe the runtime systems (OmpSs and OpenStream) and

communication libraries (GPI and MPI) being adapted to the ExaNoDe hardware. These

runtime systems and libraries will provide standard and portable programming interfaces so that

an application can take advantage of the unique system characteristics of the ExaNoDe

prototype without needing to optimize the application for the specific UNIMEM APIs defined

in D3.6 [1] and D3.7 [2].

All runtime systems and communication library have started to integrate UNIMEM which

provides non-coherent loadïstore and RDMA access to any other remote node. The integration

with UNIMEM will allow applications to transparently benefit from UNIMEM using the above-

mentioned runtimes and communication libraries. OpenStream, MPI and GPI are being directly

coupled with the UNIMEM API, while OmpSs uses the underlying MPI layer to indirectly

couple with UNIMEM. To ease the integration effort an emulation library is being used

allowing tests on a standard x86_64 SMP system without the need to have the prototype

hardware available on site. Tests using the emulation library have been successful. In the third

year the partners plan to use ARM+FPGA prototypes to test their system integration.

The following limitations of the UNIMEM library have been found when customizing the

implementations to UNIMEM and are under discussion with FORTH:

¶ Cooperation between FORTH and the other partners (particularly FHG) resulted in an

extension to the UNIMEM API functionality. Until July 2017, the prototypes had a bug

when using more than one buffer allocation registered with the communication hardware,

and no memory registration API was not available. There was also an issue that the

UNIMEM API incorrectly specified that only one buffer could be registered at a time. This

prevented registering user-provided memory buffers preventing in turn a low-latency zero-

copy approach. This bottleneck should now be resolved in the newest UNIMEM software

and needs to be tested.

¶ A parallel startup mechanism like mpi_run or gpi_run is not yet available and standard tools

and scripts cannot be used on UNIMEM. In addition, environment settings/variables and

command line arguments must be communicated to the remote node and setup correctly

before a process inside a parallel topology can start. We are in the process of defining an

interface that fulfils the requirements for GPI and MPI to start up remote processes.

In addition to the integration with UNIMEM all runtime systems and communication libraries

also start to integrate FPGA support e.g. based on experience from previous projects. E.g. BSC

has participated in the AXIOM project, UoM is participating in the EcoSCALE project.

Finally, this deliverable describes other runtime support, specifically regarding thermal and

power management and runtime libraries for performance-critical primitives:

¶ The ExaNoDe hardware does not provide hardware mechanisms to control power

consumption, so the power and thermal control in the scope of the project will directly

control the frequency of cores to optimise the power reduction while minimizing the

application performance loss. With the MPI profiling tool in the reference application

QuantumESPRESSO a DVFS (Dynamic Voltage Frequency Scaling) based power capping

approach has been tested and has shown competitive results with respect to hardware based

power and thermal control mechanisms.

¶ Dynamic load balancing has been implemented as a dynamic load balancing library on top

of UNIMEM. It relies on remote atomic operations provided by UNIMEM for which an

emulation library has been developed which is integrated with the FORTH RDMA

emulation library.

These technologies will be made available and potentially integrated into the optimized

implementations of GPI, OmpSs, OpenStream and MPI.

Project No. 671578 ExaNoDe Deliverable D3.2 Page iv of viii

Table of Contents

1 Introduction .. 1
2 Runtime systems ... 3

2.1 OmpSs.. 3
2.1.1 Introduction to OmpSs-v2 .. 3
2.1.2 Nanos6 runtime system on distributed memory ... 4

2.2 OpenStream ... 9
2.2.1 Introduction to OpenStream ... 9
2.2.2 Exploiting UNIMEM in OpenStream .. 10
2.2.3 Implementation ... 10
2.2.4 ExaNode Mini-app ... 11

2.2.5 Towards FPGA integration .. 11

2.3 Parallel runtime support ... 12

2.3.1 Introduction .. 12
2.3.2 Optimized runtime support ... 12

3 Communication Libraries ... 13
3.1 GPI ... 13

3.1.1 Introduction to GPI ... 13

3.1.2 Exploiting UNIMEM in GPI .. 13

3.1.3 Design of preliminary software implementation .. 15
3.1.4 Suitable ExaNode Mini-app ... 16
3.1.5 Current Status and Limitations ... 16

3.1.6 FPGA Prototype System .. 18
3.2 MPI .. 18

3.2.1 State-of-the-Art MPICH ... 18
3.2.2 MPI over UNIMEM Architecture .. 19

3.2.3 Development Approach and Current Status ... 19
3.2.4 Preliminary results .. 20

3.3 Further Requirements of the runtimes and communication models on the underlying

platform .. 21
3.3.1 Requirements of OmpSs ... 21

3.3.2 Requirements of OpenStream .. 22
3.3.3 Requirements of GPI .. 22
3.3.4 Requirements of MPI ... 22

3.4 Suitable ExaNoDe Mini-apps .. 23

4 Power and thermal control ... 24
4.1 HPC Architectures ... 24

4.2 Power Management in HPC Systems .. 25
4.3 Hardware Power Controller ... 26
4.4 Architecture Target .. 27
4.5 Monitoring Runtime .. 27
4.6 Methodology .. 28

4.7 System Analysis... 29
4.8 Application Analysis ... 30
4.9 Impact on the power and thermal runtime support .. 32

5 Concluding Remarks .. 33
6 Future Work ... 34

7 References and Applicable Documents .. 36

Project No. 671578 ExaNoDe Deliverable D3.2 Page v of viii

Project No. 671578 ExaNoDe Deliverable D3.2 Page vi of viii

Table of Figures

Figure 1: Fine-grained release of dependencies using the weakwait construct of OmpSs-v2 ... 3
Figure 2: Virtual Memory (VM) address space representation of cluster nodes managed by

Nanos6. ... 5
Figure 3: Distributed allocation in Nanos6 is a collective operation. The array is allocated first

on all nodes and then logically distributed across them ... 6
Figure 4: Nanos6 task offloading. A ready task can be offloaded to a remote node. All tasks

with a dependency on the offloaded task will wait until the offloaded signals its

completion. ... 7
Figure 5: Scaling of a matrix vector multiplication operation implemented in OmpSs with

Nanos6 Clusters. ... 8
Figure 6: Scaling of a matrix vector multiplication operation implemented in MPI 9

Figure 5: GPI Building blocks for ExaNoDe architecture support .. 13
Figure 6: GPI Building Blocks of UNIMEM ... 14
Figure 7: GPI-2 bandwidth on UNIMEM Prototype system (Sockets over Unimem) 17

Figure 8: GPI-2 latency on the UNIMEM Prototype system (Sockets over UNIMEM) 18
Figure 9: State-of-the-art MPICH design, showing UNIMEM OFI provider 19
Figure 10: Future optimized UNIMEM MPI implementation with overriding collectives 19
Figure 11: Roundtrip latency for small message sizes. .. 20

Figure 12: Throughput for large data payloads. ... 21
Figure 13: DVFS mechanism ... 25
Figure 14: RAPL power domain .. 26

Figure 15: Monitor runtime .. 28
Figure 16: Comparison of DVFS and RAPL (Time window of 50 seconds) 29

Figure 17: Sum of MPI and application time grouped by interval frequencies 30
Figure 18: Time gain of DVFS w.r.t RAPL grouped by interval frequencies 31

Figure 19: Average CPI and number of AVX instructions retired on different interval

frequencies .. 32

Project No. 671578 ExaNoDe Deliverable D3.2 Page vii of viii

List of abbreviations

Term Definition

ACPI Advanced Configuration and Power Interface

API

APP

Application Programmer Interface

BW (MPI) Busy Waiting MPI

CPI Cycles Per Instruction

CPU Central Processing Unit

DoA Description of the Action

DSA Dynamic Single Assignment

DVFS Dynamic Voltage and Frequency Scaling

EAW Energy-Aware MPI Wrapper

ECED Edge and Coherence-Enhancing Anisotropic Diffusion filter

FFT Fast Fourier Transform

FIFO First In First Out

FPGA Field Programmable Gate Array

FSP First Step Problem

GAS Global Address Space

GASNet Global Address Space Networking

GASPI Global Address Space Programming Interface

GPL GNU General Public License

GPU Graphics Processing Unit

GSAS Global Shared Address Space

HLS High-Level Synthesis

IB (MPI) Interrupt-based MPI

ILP

IMC

Integer Linear Programming

ISP

LLC

i-th Step Problem

MCTP (Fraunhoferôs) Multicore Thread Package

MPI Message Passing Interface

MPSD / MPMD Multiple Program Single/Multiple Data

NUMA Non-Uniform Memory Access

OFI OpenFabrics Interface

OS Operating System

OTC

PE

Optimal Thermal Controller

PGAS Partitioned Global Address Space

PID ProportionalïIntegralïDerivative (controller)

PMPI

PMU

MPI Profiling interface

PoC Proof of Concept (prototype)

QEïCP Quantum ESPRESSO CarïParrinello

RAPL (Intel) Running Average Power Limit

RDMA Remote DMA (Direct Memory Access)

RTM Reverse Time Migration

SIMD Single Instruction Multiple Data

SPSD / SPMD Single Program Single/Multiple Data

SMP Symmetric Multiprocessor

TDP Thermal Design Power

Project No. 671578 ExaNoDe Deliverable D3.2 Page viii of viii

TMC Thermal-aware Task Mapper and Controller

UDP User Datagram Protocol

VMR Virtual Memory Region

Project No. 671578 ExaNoDe Deliverable D3.2 Page 1 of 37

1 Introduction
The ExaNoDe project is developing a unique HPC system architecture based on the UNIMEM

architecture, which is also the basis for the related projects EUROSERVER [3], ExaNeSt [4]

and EuroEXA [5]. A system that implements UNIMEM consists of a number of computational

nodes connected through a custom network. Each node typically contains multiple processing

cores, which communicate amongst themselves using coherent shared memory as provided by

the hardware. Distinct nodes communicate using UNIMEMôs global address space (GAS),

which provides non-coherent loadïstore and RDMA access to any other remote node. The

UNIMEM hardware architecture is exposed to user space via the Global Shared Address Space

(GSAS), user-space RDMA, mailbox and remote allocator APIs defined in D3.6 [1] (which

was due in project month 12).

For easier programming, the application developers will be provided with standard and portable

programming interfaces through the runtime systems and communication libraries described in

this deliverable. This approach allows applications to take advantage of the characteristics of

the ExaNoDe system architecture and UNIMEM architecture, without them having to be ported

to a specific API and without the application developer needing to understand in detail the

associated performance tradeoffs.

Section 2 describes the work done on integrating the task-based programming models OmpSs

and OpenStream with UNIMEM. In addition work done to support FPGA programming has

been included in the section as well as the choice of mini-application to test the programming

model with.

OmpSs is a task-based programming model that extends OpenMP with new directives for

asynchronous parallelism and heterogeneous devices such as GPUs and FPGAs. In ExaNoDe,

the cluster implementation of OmpSs runtime system Nanos6 is being leveraged as the basis

for efficient runtime support for offloading tasks across nodes on the UNIMEM architecture

with the help of the underlying MPI communication API. OmpSs already supports offloading

of tasks to FPGAs, using High-Level Synthesis (HLS), and it is being ported to the Xilinx

UltraScale+ FPGA in the AXIOM Project [6]

OpenStream is a task-based data-flow programming model also implemented as an extension

to OpenMP, and designed for efficient and scalable data-driven execution. OpenStream has

explicit dependencies in the source program marked using streams. Compile-time

transformations map each taskôs memory accesses to private input and output buffers. The

OpenStream runtime system controls memory allocation, task placement and RDMA memory

transfers between tasks. OpenStream is supporting OpenCL to exploit FPGAs and is integrating

the EcoSCALE [7] High-Level Synthesis (HLS) toolchain.

Section 3 describes the integration of the communication APIs GPI and MPI in the ExaNoDe

prototype. In addition work done to support FPGA programming has been included in the

section as well as the choice of mini-application to test the programming model with.

GPI is an open-source communication library that implements the GASPI standard PGAS API.

It provides a portable and lightweight API that leverages remote completion and one-sided

RDMA-driven communication, both being efficiently supported by the UNIMEM architecture.

UNIMEM dependent module of GPI have been identified, integrated with UNIMEM and

integrated with an emulation framework to socket layer of UNIMEM, the software has been

tested on the remote prototype. A setup of a small test system consisting of Xilinx Ultrascale+

FPGAs and ARM 64-bit in one package is foreseen to build up the necessary FPGA support.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 2 of 37

MPI is the standard message-passing API supported by all serious HPC systems and employed

by the vast majority of scientific applications. Efficient support for MPI is mandatory for any

HPC system or prototype, and MPI support is an important output from ExaNoDe WP3 that is

needed by the ExaNeSt project and will be further optimized in the EuroEXA project. The

OmpSs integration of UNIMEM wil l be based on MPI. The coupling will be done with the low-

level network interface OFI on which the MPI implementation MPICH is built.

Section 4 describes thermal and power management. These technologies will be made available

and potentially integrated into the optimized implementations of GPI, OmpSs, OpenStream and

MPI.

The runtime systems and communication libraries are being prototyped and developed using

(a) remote access to the multi-board prototype hosted at FORTH in Crete, which provides

functional verification on real hardware, and (b) software emulation of the UNIMEM APIs

using a software layer provided by FORTH and UOM. The latter provides the ability to perform

substantial development work on a local machine.

The runtime systems and communication library will be tested and evaluated using the mini-

applications from WP2 (from D2.1 [8]) as indicated in Table 1.

Table 1: Comparison of runtime systems and communication libraries

MPI GPI-2 OmpSs (clusters) OpenStream

Programming

model

Message

passing

PGAS Tasks with argument

directionality

(input/output)

Tasks with explicit

dependencies specified

using streams

Data visibility Local to MPI

process

Global Global Global

Mapping work to

nodes

Manual Manual Runtime system Runtime system

Language type API API Language extension

(Pragmas)

Language extension

(Pragmas)

Execution style MPMD MPMD SPSD / SPMD SPSD / SPMD

Inter -node

communication

Explicit

(message

passing)

Explicit

(one-sided

asynchronous)

Implicit

(runtime system based

on argument

directionality)

Implicit

(runtime system based on

streams)

Work scheduling Manual Manual Runtime system Runtime system

Base language(s) C, C++,

FORTRAN

C, FORTRAN C, FORTRAN, CUDA C

WP2 Mini -app All GPI test suite,

separate stencil

kernel

MiniFE HydroC, MiniFE and

NEST

Project No. 671578 ExaNoDe Deliverable D3.2 Page 3 of 37

2 Runtime systems
The work on two task-based runtime systems, OmpSs and OpenStream, is presented in this

section. Both OmpSs and OpenStream extend the programming language (C, FORTRAN or

CUDA in case of OmpSs, C in case of OpenStream) with pragmas. The internode

communication is implicit. OmpSs and OpenStream will exploit UNIMEM in their cluster

implementation.

2.1 OmpSs

This section was contributed by BSC.

This section presents the contributions of BSC related to the OmpSs programming model and

the Nanos runtime system for distributed execution. In Section 2.1.1 we discuss the latest

features of OmpSs which enable more opportunities for exploiting parallelism at the

programming model level. Section 2.1.2 presents the distributed memory version of Nanos6,

the new implementation of the OmpSs programming model. Section 2.1.2.1 presents the

memory model of the distributed memory Nanos6, Section 2.1.2.2 describes the execution

model, showing how tasks can be offloaded to nodes of the cluster transparently to the

programmer, Section 2.1.2.3 discusses the design of the communications layer of the runtime

system and finally, in Section 2.1.2.4 we show some initial results from popular linear algebra

kernels ported to the OmpSs programming model.

2.1.1 Introduction to OmpSs-v2

OmpSs [9] is a task-based parallel programming model aimed to provide scalability and

malleability without significant programming effort. OmpSs-v2 [10] is an extension of the

programming model, initiated in the INTERTWinE [11] Project that increases the scalability

of applications by integrating more efficiently nested tasks, a natural way to decompose a bigger

problem in finer-grain computational tasks, with task dependencies.

2.1.1.1 Fine-grained release of dependencies across nesting levels

Task-based programming models that support dependencies and nesting normally require a the

invocation of a synchronisation primitive at the end of the task, e.g. an OpenMP taskwait

pragma, which blocks the task until all its subtasks have finished. This is required in order to

preserve the correct semantics of dependencies across tasks. Prior work in the INTERTWinE

Project introduced the OmpSs-v2 weakwait clause to task pragma. The weakwait clause

#pragma omp task depend (inout :a,b) weakwait //Task T1

{

 a++; b++;

 #pragma omp task depend (inout : a) //Task T1.1

 a += ...;

 #pragma omp task depend (inout : b) //Task T1.2

 b += ...;

}

#pragma omp task depend (in : a) //Task T2

... = ... + a + ...;

#pragma omp task depend (in : b) //Task T3

... = ... + b + ...;

Figure 1: Fine-grained release of dependencies using the weakwait construct of OmpSs-v2

Project No. 671578 ExaNoDe Deliverable D3.2 Page 4 of 37

implicitly inserts a taskwait after the execution of the task, which allows the runtime system to

understand that no more subtasks are going to be created and the dependencies of the task that

do not need to be enforced any more can be released incrementally.

For example in Figure 1 we have a code snippet with task T1 that depends on variables a and b

and has two subtasks T1.1 which depends on a and T1.2 which depends on b, task T2 which

depends on a and task T3 which depends on T3. Without the weakwait construct T1 would need

to include a #pragma omp taskwait at the end of the task body. T2 and T3 would wait until the

completion of T1 which would happen only after T1.1 and T1.2 have finished. With the

weakwait clause once the body of T1 exits only the live dependencies of T1 need be enforced,

i.e., if T1.1 has not yet finished the dependency from T1 to T2 becomes a dependency from

T1.1 to T2, so that T2 can start even if T1.2 has not finished yet. This allows the discovery of

more parallelism dynamically.

In the previous example, in order to release dependencies this way task T1 needs to finish

execution. However, it might be useful to release dependencies while the body of the parent

task is still executing, e.g., the task knows that it will use some data only at the beginning. In

order to enable this functionality OmpSs-v2 introduces a new directive:

 #pragma omp release depend(é)

which releases all the dependencies in the list of the depend clause.

2.1.1.2 Weak dependencies

Section 2.1.1.1 presents how OmpSs-v2 allows the early release of dependencies from inner to

outer nesting-levels in a fine-grained fashion. However, where nesting is used, it is likely that

the outer nesting levels define dependencies in a coarser granularity. Even if some elements of

the depend clause of the outer task is only needed by its subtasks, its execution and eventually

the creation of the subtasks will be deferred and discovery of parallelism, suspended.

OmpSs-v2 extends the depend clause with the weakin, weakout and weakinout dependency

types. Semantically, these types define dependencies equivalent to the non-weak types. When

a task declares weak dependencies, though, it signifies that it will not access itself the data, only

its subtasks will do, hence the task is allowed to start its execution, which will allow it to create

the subtasks.

As a result, early release of dependencies and weak dependencies, together in action can

potentially result in increased parallelism discovery while expressing the applications using

nesting which is very natural for a large number of problems.

2.1.2 Nanos6 runtime system on distributed memory

OmpSs-v2 is implemented in Nanos6 the successor of the Nanos++ runtime system. The choice

to implement a new runtime system, rather than implementing OmpSs-v2 as extensions in

Nanos++, is guided from the requirements of backwards compatibility for OmpSs applications

as well as better maintainability of the Nanos6 codebase in comparison with Nanos++.

Nanos6 provides a new version for the distributed memory runtime implementation in the

ExaNoDe project, which incorporates the features of the OmpSs-v2 programming model and

introduces a novel memory model, task offloading mechanism and communication layer.

2.1.2.1 Nanos6 memory model

The distributed memory version of OmpSs developed in the ExaNoDe Project provides a

Partitioned Global Address Space (PGAS) model abstraction layer for the memory view of the

Project No. 671578 ExaNoDe Deliverable D3.2 Page 5 of 37

system. This OmpSs memory layout is general-purpose and applicable to an implementation

for any cluster, but it enables future work, in ExaNoDe or EuroEXA, to take advantage of the

UNIMEM shared memory architecture. The OmpSs memory model presents the distributed

physical address space of the nodes involved in the computation as a single address space which

is accessible by every compute node of the cluster. As a result, on conventional clusters that

require physical memory copies among nodes of the cluster, the programmer does not need to

explicitly program these data transfers, as they are handled by the Nanos6 distributed memory

runtime using MPI. The current implementation will target UNIMEM via the UNIMEM-

optimized MPI library. We will consider the potential benefit of future optimizations to use the

native UNIMEM API to eliminate the data transfers on UNIMEM platforms, while maintaining

software compatibility with traditional distributed memory clusters.

Figure 2: Virtual Memory (VM) address space representation of cluster nodes managed by Nanos6.

Figure 2 shows the layout of the virtual memory of the cluster nodes managed by the Nanos6

runtime system. During initialization Nanos6 maps in every node a virtual memory region

(VMR) large enough to handle the maximum memory requirements of the OmpSs application.

The starting address of these VM regions is the same on every node. This is necessary in order

to facilitate the transfer of data across nodes without having to apply address translation across

nodes. Memory requests are served through custom allocators of the Nanos6 runtime system.

Subsequently, Nanos6 divides each VMR into two distinct regions, which have different

allocation semantics.

The lower addresses of the VMR are reserved for conventional local memory allocations, i.e.,

stack and normal heap allocations. Nanos6 divides this set of addresses equally among the

nodes of the cluster. This means that every address within this region is used to store the local

data of one particular node of the cluster. The rest of the nodes of the cluster use these addresses

whenever they need to bring local data of the said node, temporarily. This simplifies the process

of moving data around the cluster, since it eliminates the need for address translation.

The higher addresses of the VMR are reserved for distributed allocations. An allocation from

this memory region is implemented inside the runtime system as a collective operation across

all nodes of the cluster. Figure 3 describes the operation of a distributed allocation. Firstly, the

file:///D:/../../Library/Containers/com.microsoft.Word/Data/images/nanos6-mem-model.pdf

Project No. 671578 ExaNoDe Deliverable D3.2 Page 6 of 37

whole distributed array is allocated in every cluster node at exactly the same memory range

ὴὸὶȟὴὸὶίὭᾀὩ. Subsequently, each node becomes the home node of one part of the array.

This means that by default, the latest produced data of a subrange of the array will be stored in

its home node. If during execution, a range ίόὦὶὥὲὫὩῂὸὶȟίόὦὶὥὲὫὩῂὸὶίὭᾀὩ needs to

be used by a task that is scheduled on a node different than its home node, a memory transfer

will be initiated from the home node of the subrange. When a node fetches a range of data from

its home node it uses the same range of addresses as its home node does. Those virtual addresses

are available also locally, since during the allocation of the array these addresses were allocated

on every node of the cluster. In this way, Nanos6 does not have to do address translation when

it moves distributed data across the cluster nodes. The way an array is distributed to home nodes

is controlled by the programmer who can choose the distribution policy. Information about the

distribution policy of arrays can be used later by the Nanos6 scheduler in order to make

decisions based on locality criteria. Thus the distribution policy is meant to be chosen according

to the access patterns of the application.

Figure 3: Distributed allocation in Nanos6 is a collective operation. The array is allocated first on all nodes

and then logically distributed across them

2.1.2.2 Nanos6 execution model

The memory model is coupled with the task-parallel semantics of OmpSs for defining

computations. The programmer defines tasks i.e., computational units that operate on ranges of

data located on the address space.

ptr

size

Node 1

ptr

size

Node 2

ptr

size

Node 3

ptr

size

Node 4

/ * Phase 1: al l ocat e memor y * /

ptr

size

Node 1

ptr

size

Node 2

ptr

size

Node 3

ptr

size

Node 4

/ * Phase 2: di st r i but e ar r ay * /

Project No. 671578 ExaNoDe Deliverable D3.2 Page 7 of 37

Nanos6 uses a masterïslave architecture. The OmpSs application begins executing on the

master node, similarly to the shared-memory flavour of the runtime. The code is executed

serially and whenever a #pragma omp task directive is encountered a new task is created

and becomes available for concurrent execution once its dependencies are resolved. When

running on distributed memory, the scheduler of Nanos6 can also decide to offload tasks to

slave, or else remote, nodes once they are ready for execution, i.e., all their strong dependencies

have been resolved.

During execution, the scheduler takes decisions regarding the node onto which the task should

be offloaded. Before a remotely-executed task executes its body function, the runtime system

copies any nonïnode-local data to the node that the task will execute on. The programmer needs

to declare all the dynamically allocated data that the task uses and the way the task will handle

them using the dependencies clauses: in(), out(), inout(), weakin(), weakout() and weakinout().

When executing on distributed memory, in addition to declaring the dependencies among tasks,

these clauses provide the necessary information about data transfers that must be performed by

the runtime before executing a task.

Figure 4: Nanos6 task offloading. A ready task can be offloaded to a remote node. All tasks with a

dependency on the offloaded task will wait until the offloaded signals its completion.

Figure 4 presents an example of the execution model of Nanos6 for distributed memory

systems. In this example, when task T2 becomes ready for execution, the scheduler decides to

offload it to Node 2. The original task is marked as an offloaded task and it remains in the

memory of Node 1 so that the dependencies within Node 1 are preserved. Task T3 on Node 1

has a dependency on T2 and as a result it will not be ready until the T2 is marked as complete.

This will happen once the remote T2 sends a message to the offloaded T2 signaling its

completion. Along with the task T2, Node 1 sends to Node 2 information regarding the location

of all the data that T2 takes as input (in() and inout() dependencies). Once the access information

for all the input arguments of the remote task T2 on Node 2 is received the task T3 is ready for

execution. In addition, the remote T2 creates three subtasks. The first two are executed locally,

but T2.2 is offloaded by the scheduler from Node 2 to Node 3. The parent task T2 will not be

marked as complete until the remote T2.2 finishes. When T2.2 on Node 3 finishes it sends a

message to Node 2 along with access information about all the output dependencies i.e., out()

Project No. 671578 ExaNoDe Deliverable D3.2 Page 8 of 37

and inout(). This information is then propagated from Node 2 to Node 1. At this point T3 can

start execution, knowing the location of all the output accesses of T2. This example shows how

Nanos6 uses the dependency system to propagate information regarding the location of all the

data of the OmpSs application. This scheme allows us to handle all the data transfers without

the need of a software directory, which simplifies the design and implementation and minimizes

the amount of communication among the cluster nodes.

2.1.2.3 Communication Layer

The implementation of Nanos6 requires communication among the cluster nodes for

exchanging command and data transfer messages. Command messages include all the

messages for offloading tasks, synchronization of nodes, sending information regarding the

location of data and initiating data transfers. Data transfer messages are used to transfer data

regions among nodes.

The communication layer of Nanos6 operates as an abstraction layer that decouples the rest of

the components of the runtime system from the actual library that is used to implement the

actual network transfers. This design is very modular since it allows the network

communication layer to be transparently implemented on top of different libraries and allows

the user to choose the most desirable implementation at runtime.

For ExaNoDe we have implemented the communication layer of Nanos6 on top of standard

MPI. This provides compatibility with all HPC systems that implement the MPI standard,

making it a very appealing choice. In particular, the port of MPI to the UNIMEM architecture

will allow Nanos6 to run on any UNIMEM platform without modifications. In future work, in

ExaNoDe or EuroEXA we will consider the benefit of eliminating the data transfer messages

using the native UNIMEM API, while maintaining software compatibility with traditional

distributed memory clusters.

2.1.2.4 Preliminary results

Figure 5: Scaling of a matrix vector multiplication operation implemented in OmpSs with Nanos6

Clusters.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 9 of 37

Figure 6: Scaling of a matrix vector multiplication operation implemented in MPI

We have performed an evaluation of the initial implementation of Nanos6 using various

BLAS kernels ported to OmpSs-v2, and compared them with the equivalent MPI

implementations. Figure 5 and Figure 6, respectively, show the scaling of a matrixïvector

multiplication operation in OmpSs and MPI measured on the MareNostrum 4 supercomputer.

The results show that, compared with MPI, Nanos6 currently faces scalability issues when the

problem sizes increase. This could be attributed to various issues, e.g. the scheduler

implementation of Nanos6 or overheads related to the offloading of tasks to nodes and

caching data to remote nodes. We are currently investigating these bottlenecks with the

assistance of Extrae and Paraver, which are the tracing and performance analysis tools that

have been developed from BSC and are being integrated in Nanos6.

2.2 OpenStream

This section was contributed by UOM.

2.2.1 Introduction to OpenStream

OpenStream [12] is a task-parallel, data-flow programming model implemented as an extension

to OpenMP. It is designed for efficient and scalable data-driven execution; shared-memory

programming is allowed for fast prototyping, essentially following the OpenMP syntax, but

additional information must be provided by the programmer, using a dedicated syntax, in order

to take advantage of OpenStream optimizations. In particular, OpenStream enables

programmers to express arbitrary dependence patterns, which are used by the runtime system

to exploit task, pipeline and data parallelism. Each data-flow dependence is semantically

equivalent to a communication and synchronization event within an unbounded FIFO queue.

Pragmatically, in the original shared-memory instantiation, this is implemented by compiling

dependences as accesses to task buffers dynamically allocated at execution time: writes to

streams result in writes to the buffers of the tasks consuming the data, while read accesses to

streams by consumer tasks are translated to reads from their own, task-private buffers.

Compared to the more restrictive data-parallel and forkïjoin concurrency models, task-parallel

models enable improved scalability through load balancing, memory latency hiding, mitigation

of the pressure on memory bandwidth, and as a side effect, reduced power consumption.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 10 of 37

Currently developed at UOM, OpenStream further takes advantage of the information provided

by programmers on task dependences to aggressively optimize memory locality through

dynamic task and data placement.

2.2.2 Exploiting UNIMEM in OpenStream

OpenStream relies on a private-by-default strategy for handling communication between tasks,

which means that despite a shared-memory view from the programmerôs perspective,

communication is more akin to message-passing than to concurrent shared-memory

communication. This is made possible by requiring programmers to provide additional

information on how data is accessed within tasks. This information is used at compile time to

generate the appropriate modifications to memory accesses to achieve Dynamic Single

Assignment (DSA). OpenStream tasks compute on data available in input buffers and write

data in output buffers, each belonging to a unique task reading from them. This data-flow

execution model is a perfect match for the UNIMEM memory model, providing a

straightforward mapping of communication on top of RDMA and minimizing the reliance on

global atomics. Furthermore, the privatization of data communicated between tasks is the key

to enable the runtime to fully control the locality of memory allocation and of task placement.

OpenStream relies on the inter-node atomics provided in the UNIMEM memory model to

implement low-level runtime algorithms, such as dynamic load balancing, inter-node

synchronization and locality-aware scheduling and memory allocation. This is further discussed

in Section 4.2.

Further optimization of the behavior of the OpenStream runtime will be possible if UNIMEM

permits RDMA and atomics to be used within the same memory regions. This has been one of

the key challenges to port OpenStream as it has required splitting the data-structures used for

managing memory and task placement across separate memory regions while ensuring that data

and meta-data remain coherent.

The development of concurrent data-structures and algorithms on memory models that do not

provide sequential consistency is patently error-prone and time consumming. Testing poses

significant challenges as errors may only manifest when specific interleavings of memory

operations occur ï behavior which can be impossible to exhibit on emulation or on prototypes

where the timing is substantially different than the target hardware. This problem is further

compounded when the memory model is not uniform across all execution units as node-local

behavior will differ from inter-node behavior. We expect that a substantial number of issues are

likely to become apparent when executing on increasingly advanced hardware that allows more

memory interleavings to occur.

For example, we expect that the behavior of atomic operations provided in UNIMEM will have

an impact on our work-stealing load-balancing algorithm if there is an asymmetry between the

success rates of local and remote atomic operations. Such an asymmetry would introduce a bias

in the way our algorithm works, which in turn would translate into poor work distribution across

the machine. As we further discuss below, this is critical for OpenStream programs as we do

not assume an initial distribution of data and work across the machine.

2.2.3 Implementation

Communication is automatically managed by the OpenStream runtime system. Part of the

work is done at compilation time, by privatizing all data dependences between tasks and

introducing runtime hooks for setting up remote memory operations. This step enables the

runtime to determine which data is locally available and which data needs transferring, then

initiate the memory transfers and determine when all data required for execution is finally

Project No. 671578 ExaNoDe Deliverable D3.2 Page 11 of 37

available. As no worker is waiting for data to be transferred, a good load balance will ensure

that computation and communication is fully overlapped.

Memory and work placement are driven by two main algorithms [13] [14]. The main

mechanism for nodes and workers to acquire work is randomized work-stealing. This allows to

balance the workload across compute resources, but may be inefficient with respect to the

amount of communication it generates as tasks are randomly acquired by workers across the

entire machine. Dependence-aware memory allocation and work-pushing allow to reduce the

amount of communication required by moving tasks to nodes that will require the least data

movement.

Multiple node startup is managed directly within the OpenStream loader rather than relying

on an external tool, and uses the remoteFork facility. The startup procedure instantiates a core

process on each node and initialises the OpenStream communication and scheduling data

structures, then allows the local processes to set up a team of worker threads on each node.

There is no initial distribution of work as OpenStream relies primarily on hierarchical work-

stealing for load-balancing. As soon as a node is ready to start executing tasks, it starts

attempting to steal work from neighboring nodes.

In later stages of execution, once data is distributed across the machine, locality-aware work-

pushing will complement work-stealing by sending tasks that require remote data to be executed

on the node where most of their inputs are located. While this approach helps reduce the amount

of data movement overall, it may lead to poor load-balance if it is used on its own as it will

have a tendency to concentrate data and work on a subset of nodes. Randomized work-stealing

is therefore still required to ensure that computation is reliably distributed across all nodes,

further enabling the possibility of seamlessly bringing new nodes online during execution.

2.2.4 ExaNode Mini-app

Due to the availability of the HydroC mini-app in multiple parallel programming models,

including a C+OpenMP version, this has been the primary target for porting to OpenStream.

The initial translation from OpenMP parallel loops to OpenStream tasks relying on shared

memory communication was straightforward and yields identical performance results on

uniform shared memory multi-core platforms. This compatibility behavior is allowed in

OpenStream to facilitate porting efforts, however, this version cannot be compiled directly to

execute on multiple UNIMEM nodes.

In a second step, the OpenStream implementation was converted from shared-memory data-

parallel execution to pure data-flow, where tasks communicate exclusively through privatized

streams. This step was complicated by the frequent use of shared memory pointer arithmetic

when communicating partial results between different computation phases of HydroC, but it is

essential to enable multi-node execution and to allow showcasing the advantages of UNIMEM

RDMA communication overlapping computation.

The porting effort has now shifted towards optimizing the data-flow implementation, in

particular focusing on eliminating over-synchronization between computation steps, and

towards integration in the UNIMEM emulation framework and the physical prototypes.

2.2.5 Towards FPGA integration

To exploit the Field-Progammable Gate-Arrays (FPGAs) that represent the bulk of the

computational power in the ExaNoDe system, we have made the decision to extend

OpenStream with OpenCL support, enabling programmers to specify multiple versions for the

work function of each task, written either in C (possibly wrapping code in other sequential

Project No. 671578 ExaNoDe Deliverable D3.2 Page 12 of 37

languages) or in OpenCL. These versions are managed by the OpenStream dynamic scheduler,

which decides at runtime on the best target for each kernel.

Currently, OpenStream is able to schedule the different kernel versions across CPU cores and

multiple, heterogeneous OpenCL devices (e.g., CPU cores + AMD APU + discrete GPU) and

we are currently optimizing the scheduler heuristics for dynamically adapting the target device

based on the observed cost of communication and compute time on each available resource for

the different types of tasks.

This preliminary work has cleared a path to the next step, which is to integrate the OpenStream

environment with the EcoSCALE high-level synthesis toolchain to take advantage of the Xilinx

Ultrascale+ FPGAs that will be available on the ExaNoDe system. The design of the current

implementation was chosen to maximise the flexibility of the OpenStream framework and we

expect to be able to integrate FPGAs in the OpenStream resource model and scheduler.

2.3 Parallel runtime support

This section was contributed by UOM.

2.3.1 Introduction

In order to maximize the efficiency of execution, both in terms of performance and energy, and

to exploit fully the massive parallelism provided by the ExaNoDe architecture, it is essential to

optimize performance-critical aspects of the runtime. In particular, UOM is focusing on

dynamic load balancing through work-stealing, dynamic scheduling for memory locality and

synchronization.

2.3.2 Optimized runtime support

UOM has ported the current state-of-the-art implementation [14] of work-stealing dynamic

load-balancing based on Chase and Levôs algorithm for intra-node load balancing, as well as

the fastest hybrid barrier synchronization implementation [15] for a single node. This first step

is essential even with the new UNIMEM memory model because these algorithms are very

sensitive to latency and therefore cannot rely on a uniform view of the memory.

In a second step, UOM has implemented a functional unoptimized work-stealing library on top

of UNIMEM for inter-node load balancing, which is integrated with the intra-node algorithm

in the form of hierarchical work-stealing, whereby work is sought in widening neighbourhoods.

This implementation relies on the remote atomic operations provided by UNIMEM, and for

which UOM has developed an emulation layer that integrates with FORTHôs RDMA emulation

library. Furthermore, to minimize the overheads incurred by memory transfers between nodes,

UOM has developed locality-aware allocation and scheduling optimizations that deliver above

94% locality and up to 99% locality and 5× speedup over hierarchical work-stealing on 24

nodes [14]. While this study was conducted on a classical NUMA machine, the results are likely

to translate into similar locality benefits, albeit with new tradeoffs that will require further

investigation, on an ExaNoDe platform once ported.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 13 of 37

3 Communication Libraries
Two communication libraries, the message passing MPI and the partitioned global address

space library GPI, will use UNIMEM. Compared to the runtime systems the inter-node

communication with the UNIMEM communication will be explicit. Thus a direct coupling

between MPI/GPI components and UNIMEM becomes center-stage in this section. For GPI the

focus is on one-sided asynchronous messages, whereas the MPI work will be foucessed on

message passing.

3.1 GPI

This section was contributed by FHG.

3.1.1 Introduction to GPI

The Fraunhofer GPI (Global Address Space Programming Interface) open-source

communication library is an implementation of the GASPI standard [16], freely available to

application developers and researchers. GASPI stands for Global Address Space Programming

Interface, and it is a Partitioned Global Address Space (PGAS) API that aims to provide extreme

scalability, high flexibility and failure tolerance for parallel computing environments.

GASPI aims to initiate a paradigm shift from bulk-synchronous two-sided communication

patterns towards an asynchronous communication and execution model. It leverages remote

completion and one-sided RDMA-driven communication in a Partitioned Global Address

Space. The asynchronous communication enables a perfect overlap between computation and

communication. The main design idea of GASPI is to have a lightweight API ensuring high

performance, flexibility and failure tolerance. More details about GPI can be found in

deliverable D3.1 or on the GPI web page (http://www.gpi-site.com/gpi2/).

3.1.2 Exploiting UNIMEM in GPI

Figure 7: PI Building blocks for ExaNoDe architecture support

The UNIMEM independent modules (Runtime Environment and GPI Groups) can be

developed/ported without any knowledge of the final hardware characteristics and interface

descriptions of the ExaNode/UNIMEM architecture. Both modules are able to run over a

secondary network using TCP/IP for data exchange. This makes it possible to start early

implementations of these components within the ExaNoDe project. The communication

http://www.gpi-site.com/gpi2/

Project No. 671578 ExaNoDe Deliverable D3.2 Page 14 of 37

interface for these modules will be RDMA over Sockets, one of the transport layers of

UNIMEM.

Both independent modules have now been ported to the aarch64 architecture and can used on

top of socket-interfaces of UNIMEM.

All UNIMEM-dependent modules, such as pinned memory segments, global atomics (and

related memory areas), passive RDMA, collectives and one-sided reads and writes managed by

IO-queues are hard to implement without detailed knowledge of the behaviour of the

interconnect interface. Therefore an emulation library has been developed that implements most

of the current functionality as described in [17]. This emulation library allows early tests on a

standard x86_64 SMP system without the need to have real prototype hardware available on

site. The remote system provided has proven not to be stable enough to run integration tests.

All dependent modules have been implemented on top of the emulation framework and early

tests were successful.

Some design decisions made by Forth for the user level RDMA Interface of UNIMEM will not

allow GPI Applications to run directly on this layer without re-compilation and re-coding. In

addition to that, the prototype systems and the available UNIMEM libraries are not yet stable

enough for developments like GPI or practical tests and benchmarks. To ensure that a working

GPI version for the ExaNoDe architecture is ready at the end of the project, we have ported the

dependent GPI Modules from our emulation framework to the socket layer of UNIMEM. At

the current stage of the project it is crucial to be able to start gpi_run. Here further work on

UNIMEM needs to be done (as pointed out in Section 3.1.5.

This workaround allows us to further improve the individual GPI-Submodules and to continue

the developing process without time-consuming delays (Erreur ! Source du renvoi

introuvable.). A running GPI communication library is the basis for the development of one-

sided micro benchmarks and mini-applications on top of the ExaNoDe hardware.

Figure 8: GPI Building Blocks of UNIMEM

Project No. 671578 ExaNoDe Deliverable D3.2 Page 15 of 37

3.1.3 Design of preliminary software implementation

The following sub-chapters are describing the implementation of dependent GPI Modules

(Erreur ! Source du renvoi introuvable.) on top of UNIMEMs socket layer.

3.1.3.1 GPI Segments

GPI Segments can be created and deleted by using standard system routines like e.g. malloc

and free. There are no size or alignment constraints on these segments as we have today with

RDMA memory segments on most other interconnects. The allocation time will also be fast as

we can use copy on write (cow) mechanisms compared to pre-pinned continuous memory

segment allocations.

3.1.3.2 GPI IO -Queues

GPI applications trigger one-sided RDMA reads and writes by placing communication tokens

into GPI IO-Queues. The status of a single token or a group of tokens can be determined at any

time by calling a wait operation on a given queue. The wait operation returns a status array

filled with the status of all completed read and write operations at that time. To enable non-

blocking functionality for all worker threads within posting and wait calls, a background

communication thread will be spawned internally. This special thread takes care of all the

ongoing communications on all GPI queues and fills up the status arrays. As the communication

takes place on top of sockets, the thread does not have to poll for io-operations or completions.

The operating system can schedule this thread when data can be sent or peer data have received

for one of the active queues.

3.1.3.3 GPI Collectives

In a first design GPI Collectives can be implemented by using internal GPI Segments and IO-

Queues as described in Sections3.1.3.1 and Erreur ! Source du renvoi introuvable.3.1.3.2.

3.1.3.4 GPI Global Atomics

GPI currently defines two operations for Global Atomics: Atomic increment and atomic

compare and swap (cas). With these two atomic operations in place, global spinlocks can be

implemented which can be used to protect global data-structures and variables. As the current

semantic for GPI Global Atomics require the immediate return of the previous values, standard

IO-Queues cannot be used due to the separation of posting and wait calls. Instead a special IO-

Queue will be implemented internally for atomics that combines and interlocks the posting and

wait calls.

3.1.3.5 GPI Passive RDMA

Passive RDMA operations cannot be fully offloaded. They need some support from the

Operating System so that passive waiting (sleeping) processes/threads can be informed when

matching communication data is available. To implement this kind of data transport a special

passive IO-Queue as described in 3.1.3.2 will be implemented. For this special IO-Queue the

background thread will not fill up any completion arrays. Instead it will trigger one of the

system calls like select, poll or epoll to inform waiting worker threads (waiting in

GPI_PASSIVE_RECEIVE) about available data. The location, status and size of the data is

returned to the caller directly from GPI_PASSIVE_RECEIVE.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 16 of 37

3.1.3.6 Parallel Process Startup

A parallel startup mechanism like mpi_run or gpi_run is still not available yet and standard

tools and scripts (e.g. process startup via ssh) cannot be used on UNIMEM. UNIMEM-

Processes need to have some kind of parent->child relationship to inherit access rights to

memory segments. In addition, environment settings/variables and command line arguments

must be communicated to the remote node and setup correctly before a process inside a parallel

topology can start. Here we are still in the process of defining an interface that fulfills the

requirements for GPI and MPI to start up remote processes.

3.1.4 Suitable ExaNode Mini-app

Beside the GPI test suite a stencil kernel application (such as an BQCD simplified kernel) will

be implemented to demonstrate the strength of overlapped and offloaded data communication

on ExaNoDe/UNIMEM.

3.1.5 Current Status and Limitations

Current Unimem Limitations for single-sided Commmunication (GPI-2) are:

¶ Single memory segment: all GPI- based applications are using at least two or more memory

segments during runtime to switch between communication buffers and computation

segments (double buffering approach for asynchronous programs). This limitation has been

present in the emulation library but is resolved in the UNIMEM software and still needs to

be tested.

¶ Size limitation of the memory segment: 256mb. This size is much too small for real world

applications, which typically use up to 16GB to 32GB per node, doing overlapped

computations and communications.

¶ Single communication channel: at least two communication channels are needed to

implement overlapped communication: One to post current IO-operations on and another

one to poll for previous posted IO-operations as described above.

¶ Size limitation per IO-operation: 8mb-1byte: for large communication sizes this will

produce a lot of overhead (several IO-operations). Stencil code algorithms might be able to

run on such a system without any changes, however especially modern machine learning

applications might need to use 32-64MB.

¶ Single RDMA status request: it would be much more efficient to request the status of an

array of communication-identifier at once. Single RDMA status requests produce a lot of

context switches and other overhead.

¶ The RDMA functionality should be implemented mostly in userspace and not in

kernelspace.

¶ Atomic operations in UNIMEM cannot use the same memory segments as RDMA IO-

operations. Since most of the GPI based applications run atomics and RDMA operations

out of the same memory segment, this limitation does not allow pre-compiled GPI-2

binaries to run on top of UNIMEM.

¶ Atomic operations on UNIMEM need some kind of relationship between affected

processes. Access-tokens are distributed over a special startup mechanism which is not

compatible with mpi_run or gpi_run. Here a startup procedure similar to mpi_run or gpi_run

is needed to establish a working environment like on any other computing system today.

¶ The remote UNIMEM prototype systems are not yet stable enough to do intensive tests. To

get significant performance data for evaluation, a stable UNIMEM environment is needed.

The above mentioned limitations will be discussed with the FORTH group.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 17 of 37

Figure 9 and Figure 10 show first measurements on the remote UNIMEM prototype, namely

the GPI-2 bandwidth and latency. The data have been taken on the TRENZ board with the

UNIMEM software stack (kernel driver and user-level library). For the latency and bandwidth

measurement for each measured point the average of 1000 samples has been taken. For latency

a classical ping-pong mechanism was employed, completion time is the time that the pong has

been received. For the bandwidth measurement the completion has been signalled by a signal

received by UNIMEM. The data values are consistent with the values reported in the MPI

implementation in Section 3.2.3. However our measurements start with smaller message sizes.

The latency and bandwidth can be compared with measurements taken with Infiniband FDR a

few years back both for GPI-2 (and MVAPICH2-1.9). The plots can be found at the GPI web

page1 . The bandwidth for Infiniband FDR saturates at messages sizes about 4kbytes at a

bandwidth of 6000 MB/s. The bandwidth is about a factor 50 higher than measured on the Trenz

board. The latency of small messages with Infiniband FDR is about 1microsec for 2bytes up to

about 2microsec for 2kbytes. This is about a factor of 250 faster than the latency measured with

GPI over UNIMEM on the Trenz board. Further optimized capabilities with the GPI

implementation are going to be implemented during the coming months.

Figure 9: GPI-2 bandwidth on UNIMEM Prototype system (Sockets over Unimem)

1 GPI web page: http://www.gpi -site.com/gpi2/benchmarks/

Project No. 671578 ExaNoDe Deliverable D3.2 Page 18 of 37

Figure 10: GPI-2 latency on the UNIMEM Prototype system (Sockets over UNIMEM)

3.1.6 FPGA Prototype System

The Exanode System drags it compute performance out of Field-Programmable-Gate-Arrays

(FPGA) to be competitive with state-of-the-art architectures configured with e.g. GPUs or other

Accelerators. We are currently in the phase of setting up a small test-system consisting of Xilinx

Ultrascale+ FPGAs and ARM 64bit cores in one package. This platform will be used to

implement a GPI-Interface that is able to offload compute kernels to the FPGA and to monitor

the external program execution. We will also evaluate different development environments for

these FPGA kernels to be able to select the best workflow that integrates optimal into the GPI

Build-Environment.

3.2 MPI

BSC has proposed to the Consortium that the high-level architectural design of the MPI port

over UNIMEM should lie on the recently-emerged OpenFabrics Interfaces (OFI)2, an open

generic low-level networking standard for HPC. This is in accordance with current efforts in

the major MPI implementations (Intel MPI, MPICH, Open MPI). The effort is performed to

overcome the well-known performance limitations of TCP, so we expect to improve upon an

MPI over TCP implementation and, when finished, offer minimal overhead with respect to

direct use of UNIMEM.

3.2.1 State-of-the-Art MPICH

Currently MPICH, the MPI implementation decided to be the primary target in this project, is

undergoing a major code rewriting on its Channel layer, moving from CH3 to the new CH4,

with major improvements on scalability and latency. Part of this effort is aimed at better

exploiting HPC networking capabilities, by providing full communication semantics to the low-

level network interface. This enables highly efficient MPI communications on top of OFI.

Currently in alpha 2 version and already passing most of the wide MPICH test suite on x64

2 https://ofiwg.github.io/libfabric

Project No. 671578 ExaNoDe Deliverable D3.2 Page 19 of 37

architectures, a stable release is foreseen to be announced in November 2017 during the SC17

conference.

3.2.2 MPI over UNIMEM Architecture

BSC is developing an OFI port (called a ñproviderò) on top of the UNIMEM API. Figure 11

shows the major high-level architectural components of the state-of-the-art MPICH

implementation described in the above section, and the light blue box represents the main

component that BSC is developing: the UNIMEM OFI provider. Figure 12 depicts a future

more optimised implementation of the UNIMEM version of MPI, with optimised collective

communications that extend the OFI API. At this point there is no expectation of having to

modify any layers of the MPI stack above OFI.

Developing an OFI provider instead of an integrated solution has the advantage that the

UNIMEM OFI provider may be usable by other MPI implementations and potentially even

other runtimes implementing the OFI API. BSC is currently targeting development under

MPICH because of its current know-how and established contacts with the developing group,

and the portability premise will be checked using Open MPI on a more advanced stage.

3.2.3 Development Approach and Current Status

For practical reasons, rather than starting the implementation of the UNIMEM OFI provider

from scratch, BSC chose to start development based on the OFI TCP/sockets provider, and

progressively replace TCP/sockets communication with communication over the native

UNIMEM API. This allows incremental development, with full functionality always provided

by TCP/sockets, while taking advantage of improved performance for the features that have

been optimized natively over the UNIMEM API.

Currently the OFI provider is able to transfer MPI_Send data payloads over native UNIMEM.

Discussions between BSC and FORTH resulted in improvements to the UNIMEM API, which

will benefit MPI and the other runtimes/communication libraries:

(1) Until July 2017, the prototype provided only a single buffer allocation registered with

the communication hardware. This was fixed in July 2017, and the change was

communicated point-to-point to the engineer at BSC when the issue was discussed at

the end of August 2017. This will improve performance for MPI and the other runtimes

Figure 11: State-of-the-art MPICH

design, showing UNIMEM OFI

provider

Figure 12: Future optimized

UNIMEM MPI implementation

with overriding collectives

Project No. 671578 ExaNoDe Deliverable D3.2 Page 20 of 37

and communication libraries by the end of the project, but the change arrived too late to

incorporate into the codebase discussed in this deliverable.

(2) The previous version of the UNIMEM API, which was based on the cDMA hardware

block, had no memory registration API, which prevents registering user-provided

memory buffers. An updated version of the API takes advantage of new features of the

zDMA hardware block on the UltraScale+ SoC. This changes the semantics of the

UNIMEM APIs, and the more powerful APIs will result in a zero-copy MPI

implementation, improving MPI usability and potentially performance. This requires

some redesign of the UNIMEM OFI provider to take advantage of the new APIs. This

does not affect the schedule for delivery of the final optimized MPI library by M36.

These limitations are under continuing discussion with FORTH. In addition, there are still

issues with the stability of the remote UNIMEM prototype. To get significant performance data

for evaluation, a stable UNIMEM environment is needed.

3.2.4 Preliminary results

Figure 11 and Figure 12 show our first performance results on the Juno prototype, comparing

the use of MPICH over an OFI TCP provider with our prototype of the UNIMEM OFI provider

(note that TCP support is in turn implemented over UNIMEM). To avoid system noise, every

measurement represents the average of 50 round-trip message exchanges. These experiments

are executed 30 times and the average is represented.

Figure 11 shows roundtrip latency for small message sizes. We can see that the pure TCP

sockets provider exposes in general lower latency than our under-development UNIMEM

provider. We expect to overcome this limitation once we move from TCP-based notification to

using the Mailbox functionality for this purpose. The figure shows that this penalty is overcome

by the much faster data payload transfers for sufficiently large transfers, starting at 128 KB. We

have not yet identified the reasons for the high latency exposed by the TCP provider at 1 KB

data payload.

Figure 11: Roundtrip latency for small message sizes.

Figure 12 shows one-way throughput (defined as 1 / roundtrip latency * 2) for large message

transfers. We can see how TCP flattens at 100 MB/s with a 2 MB data payload while the

UNIMEM provider is consistently over 3x faster, yielding up to about 370 MB/s. Note that

TCP implementations over low-level high-performance networking APIs are widely known to

0

0.5

1

1.5

2

2.5

3

3.5

1K 2K 4K 8K 16K 32K 64K 128K

R
o

u
n

d-
tr

ip
 l
a

te
n
c
y

(m
s
e
c
)

Message size (byte)

socket unimem

Project No. 671578 ExaNoDe Deliverable D3.2 Page 21 of 37

pose significant overheads due to factors such as additional memory copies, context switches

to Operating System kernel calls, and the intrinsics of the TCP protocol itself.

Figure 12: Throughput for large data payloads.

In summary, the preliminary UNIMEM implementation of MPI has higher latency than the

baseline MPI over sockets, for small messages, but this penalty is overcome for messages larger

than about 64 KB). The preliminary UNIMEM implementation achieves greater than 3x the

bandwidth for messages over about 2 MB, reaching 370 MB/s.

We have not yet been able to understand the precise reasons for the excessive latency, but we

intend to improve the implementation using the new version of the UNIMEM RDMA API,

which makes use of the zDMA hardware block, and has slightly different semantics (providing

user-level initialization of RDMA transfers), which will avoid the need for the MPI library to

allocate specific buffers for RDMA transfers, enabling a zero-copy implementation. This will

improve performance but it potentially requires major modifications to the MPI

implementation. We will also make use of the Mailbox API. This is expected provide a

complete and high-performance OFI provider on top native UNIMEM only, covering the entire

MPI 3.1 Standard.

3.3 Further Requirements of the runtimes and communication
models on the underlying platform

The runtime systems and programming models have specified their requirements on the

underlying UNIMEM system in their respective sections. Here we collect the list of

requirements:

3.3.1 Requirements of OmpSs

OmpSs will use the underlying MPI programming model which will then connect to UNIMEM.

Therefore the requirements of OmpSs itself within the ExaNoDe project on UNIMEM are

modest, however the MPI requirements need to be incorporated.

0

50

100

150

200

250

300

350

400

1M 2M 3M 4M 5M 6M 7M 8M

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Message size (byte)

socket unimem

Project No. 671578 ExaNoDe Deliverable D3.2 Page 22 of 37

3.3.2 Requirements of OpenStream

¶ OpenStream uses UNIMEM directly. To work efficiently OpenStream requires the support

of RDMA and atomics by UNIMEM.

¶ For OpenStream it is important to be able to test on larger and advanced hardware systems

to study the impact of UNIMEM on the OpenStream work stealing algorithm which ensures

load balancing. OpenStream expects that an asymmetry can occur due to the success rates

of local and remote atomic operations. OpenStream will complement the work-stealing

algorithms by sending tasks that require remote data to be executed on the node where most

of their inputs are located to reduce communication overall.

3.3.3 Requirements of GPI

¶ Single memory segment: all GPI- based applications are using at least two or more memory

segments during runtime to switch between communication buffers and computation

segments (double buffering approach for asynchronous programs). This limitation has been

present in the emulation library but is resolved in the UNIMEM software and still needs to

be tested.

¶ Size limitation of the memory segment: 256mb. This size is much too small for real world

applications, which typically use up to 16GB to 32GB per node, doing overlapped

computations and communications.

¶ Single communication channel: at least two communication channels are needed to

implement overlapped communication: One to post current IO-operations on and another

one to poll for previous posted IO-operations as described above.

¶ Size limitation per IO-operation: 8mb-1byte: for large communication sizes this will

produce a lot of overhead (several IO-operations). Stencil code algorithms might be able to

run on such a system without any changes, however especially modern machine learning

applications might need to use 32-64MB.

¶ Single RDMA status request: it would be much more efficient to request the status of an

array of communication-identifier at once. Single RDMA status requests produce a lot of

context switches and other overhead.

¶ The RDMA functionality should be implemented mostly in userspace and not in

kernelspace.

¶ Atomic operations in UNIMEM cannot use the same memory segments as RDMA IO-

operations. Since most of the GPI based applications run atomics and RDMA operations

out of the same memory segment, this limitation does not allow pre-compiled GPI-2

binaries to run on top of UNIMEM.

¶ Atomic operations on UNIMEM need some kind of relationship between affected

processes. Access-tokens are distributed over a special startup mechanism which is not

compatible with mpi_run or gpi_run. Here a startup procedure similar to mpi_run or gpi_run

is needed to establish a working environment like on any other computing system today.

¶ The remote UNIMEM prototype systems are not yet stable enough to do intensive tests. To

get significant performance data for evaluation, a stable UNIMEM environment is needed.

3.3.4 Requirements of MPI

¶ MPI requires more than a single buffer allocation registered with the communication

hardware to be able to provide a low-latency zero-copy approach.

¶ MPI requires a memory registration API to be able to register user-provided segments.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 23 of 37

3.4 Suitable ExaNoDe Mini-apps

All ExaNoDe mini-apps considered in D2.2 (Report on the ExaNoDe mini-applications) [18]

are either implemented in MPI or they have MPI versions: Abinit, BQCD, HydroC, KKRnano,

MiniFE and NEST. The four chosen applications (BQCD, HydroC, KKRnano and MiniFE) are

therefore suitable for evaluation of the MPI port. Moreover, the MPI port will be developed in

consultation with the application partners of ExaNeSt and will be made available to them for

implementation and performance evaluation using production scientific applications, in

particular those from INAF and INFN.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 24 of 37

4 Power and thermal control
Building on the definition of the thermal capping optimal policy, we focused on the realization

of the power capping problem which ease the need of extracting the thermal model from the

target architecture.

Several approaches in the literature have proposed mechanisms to constrain the power

consumption of large-scale computing infrastructures. These can be classified into two main

families. Approaches in the first class use predictive models to estimate the power consumed

by a job before its execution. At job scheduling time this information is used to allow into the

system jobs that satisfy the total power consumption budget. Hardware power capping

mechanism like RAPL (Running Average Power Limit)are used to ensure that the predicted

budget is respected during all the application phases and to tolerate prediction errors in the jobôs

average power consumption estimation [19] [20] [21]. Approaches in the second class distribute

a slice of the total system power budget to each active computing element. The per-compute

element power budget is ensured by mean of hardware power capping mechanism like RAPL.

The allocation of the power consumption budget to each compute nodes can be done statically

or dynamically [22] [23] [24]. It is goal of the run-time to trade off power reduction with

application performance loss. GEOPM implement a plugin for power balancing to improve

performance in power constraint systems reallocating power on sockets involved in the critical

path of the application.

Authors in [25] quantitatively evaluated RAPL as a control system in term of stability, accuracy,

settling time, overshoot, and efficiency. They evaluate only the proprieties of RAPL mechanism

without considering other power capping strategies and how can vary application workload.

State-of-the-art mechanism relies on a hardware mechanism to directly control the power

consumption. In the ExaNoDe architecture this feature is not present and as consequence we

constrain the power consumption by directly controlling the frequency of the cores. In the

following section, we focus on the comparison with state-of-the-art related work, which has

been done on an Intel platform, in order to compare with Intel RAPL.

4.1 HPC Architectures

HPC systems are composed of tens to thousands computational nodes interconnected with a

low-latency high-bandwidth network. Nodes are usually organized in sub-clusters allocated at

execution time from the system scheduler according to the user request. Sub-clusters have a

limited lifetime, after which resources are released to the system scheduler. Users request

resources through a batch queue system, where they submit applications to be executed. Even

a single node can be split in multiple resources shared among users. The single indivisible units

in a HPC machine are CPU, memory and possibly accelerators (GPGPU, FPGA, Many-core

accelerator, etc.).

HPC applications typically use the Single Program Multiple Data (SPMD) execution model,

where the same application executable is instanced multiple times on different nodes of the

cluster; each instance works on a partition of the global workload and communicates with other

instances to orchestrate subsequent computational steps. For this reason, a HPC application can

be seen as the composition of several tasks executed in a distributed environment which

exchanges messages among all the instances. Achieving high-performance communication on

distributed applications in large clusters is not an easy task. The Message-Passing Interface

(MPI) runtime responds to these demands by abstracting the level of network infrastructure

using a simple but high-performance interface for communication that can scale up on

thousands of nodes.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 25 of 37

HPC machines are extreme energy consumers, and server rooms require a proportioned cooling

system to avoid overheating situations. The extreme working conditions of this kind of

machines brings a lot of inefficiencies in terms of energy and thermal control, that turn in

computational performance degradation. Hardware power managers are becoming a

fundamental to controlling power utilization using different strategies to reduce energy waste

and, at the same time, assure a safe thermal environment.

4.2 Power Management in HPC Systems

Nowadays, operating systems can communicate with different hardware power managers

through an open standard interface called Advanced Configuration and Power Interface (ACPI)

[26]. In this work, we focus on ACPI implementation of Intel architecture, since most HPC

machines (more than 86% in [27]) are based on Intel CPUs. Intel implements the ACPI

specification defining different component states which a CPU can use to reduce power

consumption. Today's CPU architectures are composed of multiple processing elements (PE)

which communicate through a network subsystem that interconnect PEs, Last Level Cache

(LLC), Integrated Memory Controllers (IMC) and other uncore components. Intel architecture

optimizes ACPI using different power saving levels for cores and uncore components. The

ACPI standard defines P-states to select DVFS operating points targeting the reduction of active

power, while defines C-States the idle power levels. In our work, we consider only P-states to

manage DVFS control knob, this because HPC applications do not manifest idle time during

the execution.

Intel P-States show in Figure 13, defining a number of levels which are numbered from ñ0ò to

ñnò where ñnò is the lowest frequency and ñ0ò is the highest frequency with the possibility to

take advantage of Turbo Boost technology. Turbo Boost is an Intel technology that enables

processors to increase their frequency beyond the nominal via dynamic control of clock rate.

The maximum turbo frequency is limited by the power consumption, thermal limits and the

number of cores that are currently using turbo frequency. Since Haswell, Intel cores allow

independent per-core P-State.

Figure 13: DVFS mechanism

Intel Power Management Driver: Intel P-States are managed by a power governor

implemented as a Linux kernel driver. By default, on Linux system, Intel architectures are

managed by a kernel module called ñintel_pstateò. This driver implements a Proportionalï

IntegralïDerivative (PID) feedback controller. The PID controller calculates an error value

every 10 ms as the difference between a desired setpoint and the measured CPU load in that

period. The PID controller acts to compensate this error by adapting the P-State value.

The PID internal parameters are defined with default values by the Intel driver but can be

customized by the system administrator.

Project No. 671578 ExaNoDe Deliverable D3.2 Page 26 of 37

Inside ñintel_pstateò driver only two governors are implemented: ñpowersaveò (default) and

ñperformanceò. We will not describe in detail the operations of these governors because it is

outside the scope of this work, but from a practical point of view, ñperformanceò always

maintains the CPU at maximum frequency while ñpowersaveò can choose a different level

depending of the machine workload. Hence, ñpowersaveò tries to achieve better energy

efficiency while ñperformanceò tries to achieve the best performance at the expense of higher

energy consumption.

Linux Power Management Driver: The ñintel_pstateò driver does not support a governor that

allows users to select per-core fixed frequency. Differently, the default power management

driver of Linux ñacpi-cpufreqò does it.

ñacpi-cpufreqò is similar to Intel driver but implement a large set of governors which implement

different algorithms. The available governors are:

1. Powersave; this governor differently from Intel driver, runs the CPU always at the

minimum frequency.

2. Performance: runs the CPU always at the maximum frequency.

3. Userspace: runs the CPU at user specified frequencies.

4. Ondemand: scales the frequency dynamically according to current load. It is equivalent

to the ñpowersaveò governor of Intel driver [28].

5. Conservative: similar to ondemand but scales the frequency more gradually.

In our work, we use ñuserspaceò governor to select fixed frequencies for all the duration of our

benchmarks.

4.3 Hardware Power Controller

Figure 14: RAPL power domain

Today's CPU architectures implement reactive hardware controller to maintain the processor

always under an assigned power budget. The hardware controller tries to maximize the overall

performance while constraining the power consumption and maintaining a safe silicon

temperature. Intel architectures implement in its CPU a hardware power controller RAPL

Project No. 671578 ExaNoDe Deliverable D3.2 Page 27 of 37

depicted in Figure 14. RAPL is a control system, which receives as input a power limit and a

time window. As consequent, RAPL continuously tunes the P-states to ensure that the limit is

respected in the specified time window. RAPL can scale down and up core's frequencies when

the power constraint is not respected overriding the selected P-states. RAPL power budget and

time window can be configured writing a Machine Specific Register (MSR) on the CPU.

Maximum and minimal values for both power budget and time window are specified in a read-

only architectural register. Values for both power and time used in RAPL are represented as

multiple of a reference unit contained in a specific architectural register. At the machine start-

up, RAPL is configured using thermal design power (TDP) as power budget with a 10ms time

window. RAPL also provides 32bit performance counters for each power domain to monitor

the energy consumption and the total throttled time. RAPL implements four power domains

which can be independently configured:

1. Package Domain: this power domain limits the power consumption for the entire

package of the CPU, this includes cores and uncore components.

2. DRAM Domain : this power domain is used to power cap the DRAM memory. It is

available only for server architectures.

3. PP0/Core Domain: is used to restrict the power limit only to the cores of the CPU.

4. PP1/Graphic Domain: is used to power limit only the graphic component of the CPU.

It is available only for client architectures due Intel server architectures do not

implement graphic component into the package.

In the experimental result section, we focus our exploration on the package domain of RAPL

controller because core and graphic domains are not available on our Intel architecture.

DRAM domain is left for future exploration works. We also tried to modify the time windows

of package domain (which can be set in a range of 1ms to 46ms in our target system) to see its

impact on application performance.

Our results show that this parameter does not lead to noticeable changes in the results obtained.

For this reason, we report results only for the default 10ms time window configuration.

4.4 Architecture Target

In this work, we take as architecture target a high-performance computing infrastructure, which

is a Tier-1 HPC system based on an IBM NeXtScale cluster. Each node of the system is

equipped with 2 Intel Haswell E5-2630 v3 CPUs, with 8 cores with 2.4 GHz nominal clock

speed and 85W Thermal Design Power (TDP, [29]). We selected this target system as it

contains all the power management features (RAPL, per core DVFS, c-states) of future HPC

computing nodes and can be used as a reference for future ARM systems.

Quantum ESPRESSO (QE) [30] is an integrated suite of computer codes for electronic-structure

calculations and materials modelling at the nanoscale. It is an open source package for research

in molecule dynamics simulations and it is freely available to researchers around the world

under the terms of the GNU General Public License. Quantum ESPRESSO is commonly used

in high-end supercomputers. QE main computational kernels include dense parallel Linear

Algebra (LA) and 3D parallel Fast Fourier Transform (FFT). Moreover, most of application

workload is based on LA and FFT mathematical kernels which makes our exploration work

relevant for many HPC codes. In our tests, we use a CarïParrinello (CP) simulation, which

prepares an initial configuration of a thermally disordered crystal of chemical element by

randomly displacing the atoms from their ideal crystalline positions. This simulation consists

of a number of tests that must be executed in the correct order.

4.5 Monitoring Runtime

We developed a monitor runtime to extract system information synchronously with the

application flow. The runtime is a simple wrapper of the MPI library where every MPI function

of each process has been enclosed by an epilogue and a prologue function. We used the MPI

Project No. 671578 ExaNoDe Deliverable D3.2 Page 28 of 37

standard profiling interface (PMPI), which allow us to intercept all the MPI library functions

without modify the application source code. The runtime is integrated in the application at

linked time. Hence, this Runtime can extract information distinguishing application and MPI

phases as shows in Figure 15. The monitor runtime uses low-level instructions to access the

Performance Monitoring Unit (PMU) with low overhead. We programmed per-core PMU

registers to monitor frequency, CPI, and scalar/vector instructions retired. The monitor runtime

can intercept a very high number of MPI calls of the application.

Figure 15: Monitor runtime

4.6 Methodology

We run QEïCP with a configuration of 16 MPI processes with a one-to-one bind to each core

of our HPC node. We start by comparing different configurations of power capping in our test

environment. Initially, we split the power budget in an equal manner on both sockets, we set a

power consumption limit of 48 W on each socket, for a global power envelope of 96 W. This

test shows that the core's frequencies on different sockets are heterogeneous, suggesting that

the two sockets have different inherent power efficiency. To have the same frequency among

all the cores, the tested computing node needs of 11.3% higher power on socket 0. As a

consequence of this result, we run a set of benchmarks fixing the same frequency for all the

cores while monitoring the power consumption of each socket. We use this per-socket power

budget as power constraint to obtain the same frequency among all the cores. We execute again

the tests using RAPL to impose these per-socket power caps and leave RAPL decides the actual

frequency.

Table 2: Quantum ESPRESSO - Power Capping

Project No. 671578 ExaNoDe Deliverable D3.2 Page 29 of 37

Table 1 shows the results of our set of experiments using different levels of power caps.

In the first column, there are reported the target frequencies used to extract the power limits

specified in the second column. Second and third columns show the sum of power consumption

of both sockets using DVFS and RAPL mechanisms for power capping. We can see that the

power consumption is the same, so the power cap is respected and the tests are comparable. In

the frequency columns are reported the average frequencies for the entire application and

among all the cores. These columns show that RAPL has an average frequency of 11.1% higher

than DVFS but, if we look at the execution time (reported in next columns), DVFS has a lower

execution time, in average 2.9% faster than RAPL.

In the next sections, we will explore why DVFS power cap has a lower execution time respect

to RAPL which, in contrast, has a higher average frequency.

4.7 System Analysis

Figure 16 shows a time window of the system-aware monitoring tool for both the power capping

mechanisms while QEïCP iterates on the same computational kernel. The test reports the case

of a power constraint relative to 1.5 GHz for DVFS and RAPL power cappers. So, the results

are comparable directly.

Figure 16: Comparison of DVFS and RAPL (Time window of 50 seconds)

First, we can check the correct behaviors of power capping logic by looking at the core's

frequencies and package power consumption (first two top plots). In the DVFS plot on the left

part of Figure 16, core's frequencies are fixed at 1.5 GHz while package power consumption

floats around the average value as effect of the different application phases. In contrast, RAPL

(on the right) maintains constant the power consumption for both the sockets while core's

frequencies changes following the current application phase. Table 1 reports a similar average

power consumption for both the two cases, thus the power cappers are working as expected.

Both benchmarks show a lower CPI when the memory bandwidth is low and SIMD instructions

retired are high. In these phases, RAPL has lower frequency than the DVFS case as effect of

the higher power demand of SIMD instructions. On the other hand, RAPL assigns higher

frequencies than DVFS when CPI is high and this happens when the application is moving data

from/to memory as proved by the high memory traffic/bandwidth reported by the "Mem Ch

[GB/s]ò plot. In these phases, the number of SIMD instructions retired are lower and, as already

pointed out and shown in the RAPL plot, the core's frequencies selected by RAPL increases

above average due the higher power budget. However, increasing core's frequencies when the

application is memory bound does not reflect in a consequent performance gain due the higher

CPI and sub-linear dependency of application speed-up with frequency in these phases.

