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Executive Summary 
In this deliverable, we describe the runtime systems (OmpSs and OpenStream) and 

communication libraries (GPI and MPI) being adapted to the ExaNoDe hardware.  These 

runtime systems and libraries will provide standard and portable programming interfaces so that 

an application can take advantage of the unique system characteristics of the ExaNoDe 

prototype without needing to optimize the application for the specific UNIMEM APIs defined 

in D3.6 [1] and D3.7 [2].  

All runtime systems and communication library have started to integrate UNIMEM which 

provides non-coherent loadïstore and RDMA access to any other remote node. The integration 

with UNIMEM will allow applications to transparently benefit from UNIMEM using the above-

mentioned runtimes and communication libraries. OpenStream, MPI and GPI are being directly 

coupled with the UNIMEM API, while OmpSs uses the underlying MPI layer to indirectly 

couple with UNIMEM. To ease the integration effort an emulation library is being used 

allowing tests on a standard x86_64 SMP system without the need to have the prototype 

hardware available on site. Tests using the emulation library have been successful. In the third 

year the partners plan to use ARM+FPGA prototypes to test their system integration. 

The following limitations of the UNIMEM library have been found when customizing the 

implementations to UNIMEM and are under discussion with FORTH: 

¶ Cooperation between FORTH and the other partners (particularly FHG) resulted in an 

extension to the UNIMEM API functionality. Until July 2017, the prototypes had a bug 

when using more than one buffer allocation registered with the communication hardware, 

and no memory registration API was not available. There was also an issue that the 

UNIMEM API incorrectly specified that only one buffer could be registered at a time. This 

prevented registering user-provided memory buffers preventing in turn a low-latency zero-

copy approach. This bottleneck should now be resolved in the newest UNIMEM software 

and needs to be tested. 

¶ A parallel startup mechanism like mpi_run or gpi_run is not yet available and standard tools 

and scripts cannot be used on UNIMEM. In addition, environment settings/variables and 

command line arguments must be communicated to the remote node and setup correctly 

before a process inside a parallel topology can start. We are in the process of defining an 

interface that fulfils  the requirements for GPI and MPI to start up remote processes.  

In addition to the integration with UNIMEM all runtime systems and communication libraries 

also start to integrate FPGA support e.g. based on experience from previous projects. E.g. BSC 

has participated in the AXIOM  project, UoM is participating in the EcoSCALE project.  

Finally, this deliverable describes other runtime support, specifically regarding thermal and 

power management and runtime libraries for performance-critical primitives: 

¶ The ExaNoDe hardware does not provide hardware mechanisms to control power 

consumption, so the power and thermal control in the scope of the project will directly 

control the frequency of cores to optimise the power reduction while minimizing the 

application performance loss. With the MPI profiling tool in the reference application 

QuantumESPRESSO a DVFS (Dynamic Voltage Frequency Scaling) based power capping 

approach has been tested and has shown competitive results with respect to hardware based 

power and thermal control mechanisms.  

¶ Dynamic load balancing has been implemented as a dynamic load balancing library on top 

of UNIMEM. It relies on remote atomic operations provided by UNIMEM for which an 

emulation library has been developed which is integrated with the FORTH RDMA 

emulation library.  

These technologies will be made available and potentially integrated into the optimized 

implementations of GPI, OmpSs, OpenStream and MPI.  
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1 Introduction 
The ExaNoDe project is developing a unique HPC system architecture based on the UNIMEM 

architecture, which is also the basis for the related projects EUROSERVER [3], ExaNeSt [4] 

and EuroEXA [5]. A system that implements UNIMEM consists of a number of computational 

nodes connected through a custom network. Each node typically contains multiple processing 

cores, which communicate amongst themselves using coherent shared memory as provided by 

the hardware. Distinct nodes communicate using UNIMEMôs global address space (GAS), 

which provides non-coherent loadïstore and RDMA access to any other remote node.  The 

UNIMEM hardware architecture is exposed to user space via the Global Shared Address Space 

(GSAS), user-space RDMA, mailbox and remote allocator APIs defined in D3.6 [1] (which 

was due in project month 12). 

For easier programming, the application developers will be provided with standard and portable 

programming interfaces through the runtime systems and communication libraries described in 

this deliverable. This approach allows applications to take advantage of the characteristics of 

the ExaNoDe system architecture and UNIMEM architecture, without them having to be ported 

to a specific API and without the application developer needing to understand in detail the 

associated performance tradeoffs.  

 

Section 2 describes the work done on integrating the task-based programming models OmpSs 

and OpenStream with UNIMEM. In addition work done to support FPGA programming has 

been included in the section as well as the choice of mini-application to test the programming 

model with.  

OmpSs is a task-based programming model that extends OpenMP with new directives for 

asynchronous parallelism and heterogeneous devices such as GPUs and FPGAs. In ExaNoDe, 

the cluster implementation of OmpSs runtime system Nanos6 is being leveraged as the basis 

for efficient runtime support for offloading tasks across nodes on the UNIMEM architecture 

with the help of the underlying MPI communication API. OmpSs already supports offloading 

of tasks to FPGAs, using High-Level Synthesis (HLS), and it is being ported to the Xilinx 

UltraScale+ FPGA in the AXIOM Project [6] 

OpenStream is a task-based data-flow programming model also implemented as an extension 

to OpenMP, and designed for efficient and scalable data-driven execution. OpenStream has 

explicit dependencies in the source program marked using streams. Compile-time 

transformations map each taskôs memory accesses to private input and output buffers. The 

OpenStream runtime system controls memory allocation, task placement and RDMA memory 

transfers between tasks. OpenStream is supporting OpenCL to exploit FPGAs and is integrating 

the EcoSCALE [7] High-Level Synthesis (HLS) toolchain. 

 

Section 3 describes the integration of the communication APIs GPI and MPI in the ExaNoDe 

prototype. In addition work done to support FPGA programming has been included in the 

section as well as the choice of mini-application to test the programming model with.  

GPI is an open-source communication library that implements the GASPI standard PGAS API.  

It provides a portable and lightweight API that leverages remote completion and one-sided 

RDMA-driven communication, both being efficiently supported by the UNIMEM architecture. 

UNIMEM dependent module of GPI have been identified, integrated with UNIMEM and 

integrated with an emulation framework to socket layer of UNIMEM, the software has been 

tested on the remote prototype. A setup of a small test system consisting of Xilinx Ultrascale+ 

FPGAs and ARM 64-bit in one package is foreseen to build up the necessary FPGA support. 
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MPI is the standard message-passing API supported by all serious HPC systems and employed 

by the vast majority of scientific applications. Efficient support for MPI is mandatory for any 

HPC system or prototype, and MPI support is an important output from ExaNoDe WP3 that is 

needed by the ExaNeSt project and will be further optimized in the EuroEXA project. The 

OmpSs integration of UNIMEM wil l be based on MPI. The coupling will be done with the low-

level network interface OFI on which the MPI implementation MPICH is built.  

 

Section 4 describes thermal and power management.  These technologies will be made available 

and potentially integrated into the optimized implementations of GPI, OmpSs, OpenStream and 

MPI.  

The runtime systems and communication libraries are being prototyped and developed using 

(a) remote access to the multi-board prototype hosted at FORTH in Crete, which provides 

functional verification on real hardware, and (b) software emulation of the UNIMEM APIs 

using a software layer provided by FORTH and UOM. The latter provides the ability to perform 

substantial development work on a local machine. 

The runtime systems and communication library will be tested and evaluated using the mini-

applications from WP2 (from D2.1 [8]) as indicated in Table 1. 

 

Table 1: Comparison of runtime systems and communication libraries 

 
MPI  GPI-2 OmpSs (clusters) OpenStream 

Programming 

model 

Message 

passing 

PGAS Tasks with argument 

directionality 

(input/output) 

Tasks with explicit 

dependencies specified 

using streams 

Data visibility  Local to MPI 

process 

Global Global Global 

Mapping work to 

nodes 

Manual Manual Runtime system Runtime system 

Language type API API Language extension 

(Pragmas) 

Language extension 

(Pragmas) 

Execution style MPMD MPMD SPSD / SPMD SPSD / SPMD 

Inter -node 

communication 

Explicit 

(message 

passing) 

Explicit 

(one-sided 

asynchronous) 

Implicit 

(runtime system based 

on argument 

directionality) 

Implicit 

(runtime system based on 

streams) 

Work scheduling Manual Manual Runtime system Runtime system 

Base language(s) C, C++, 

FORTRAN 

C, FORTRAN C, FORTRAN, CUDA C 

WP2 Mini -app All  GPI test suite, 

separate stencil 

kernel 

MiniFE HydroC, MiniFE and 

NEST 
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2 Runtime systems 
The work on two task-based runtime systems, OmpSs and OpenStream, is presented in this 

section. Both OmpSs and OpenStream extend the programming language (C, FORTRAN or 

CUDA in case of OmpSs, C in case of OpenStream) with pragmas. The internode 

communication is implicit. OmpSs and OpenStream will exploit UNIMEM in their cluster 

implementation. 

2.1 OmpSs 

This section was contributed by BSC. 

 

This section presents the contributions of BSC related to the OmpSs programming model and 

the Nanos runtime system for distributed execution. In Section 2.1.1 we discuss  the latest 

features of OmpSs which enable more opportunities for exploiting parallelism at the 

programming model level. Section 2.1.2 presents the distributed memory version of Nanos6, 

the new implementation of the OmpSs programming model. Section 2.1.2.1 presents the 

memory model of the distributed memory Nanos6, Section 2.1.2.2 describes the execution 

model, showing how tasks can be offloaded to nodes of the cluster transparently to the 

programmer,  Section 2.1.2.3 discusses the design of the communications layer of the runtime 

system and finally, in Section 2.1.2.4 we show some initial results from popular linear algebra 

kernels ported to the OmpSs programming model. 

2.1.1 Introduction to OmpSs-v2 

OmpSs [9] is a task-based parallel programming model aimed to provide scalability and 

malleability without significant programming effort. OmpSs-v2 [10] is an extension of the 

programming model, initiated in the INTERTWinE [11] Project that increases the scalability 

of applications by integrating more efficiently nested tasks, a natural way to decompose a bigger 

problem in finer-grain computational tasks, with task dependencies.  

2.1.1.1 Fine-grained release of dependencies across nesting levels 

Task-based programming models that support dependencies and nesting normally require a the 

invocation of a synchronisation primitive at the end of the task, e.g. an OpenMP taskwait  

pragma, which blocks the task until all its subtasks have finished. This is required in order to 

preserve the correct semantics of dependencies across tasks. Prior work in the INTERTWinE  

Project introduced the OmpSs-v2 weakwait clause to task pragma. The weakwait clause 

 
#pragma omp task depend ( inout :a,b) weakwait    //Task T1  

{  

  a++; b++;  

  #pragma omp task depend ( inout : a)           //Task T1.1  

  a += ...;  

  #pragma omp task depend ( inout : b)           //Task T1.2  

  b += ...;  

}   

 

#pragma omp task depend ( in : a)                //Task T2  

... = ... + a + ...;  

 

#pragma omp task depend ( in : b)                //Task T3  

... = ... + b + ...;  

 

 
Figure 1: Fine-grained release of dependencies using the weakwait construct of OmpSs-v2 
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implicitly inserts a taskwait after the execution of the task, which allows the runtime system to 

understand that no more subtasks are going to be created and the dependencies of the task that 

do not need to be enforced any more can be released incrementally. 

 

For example in Figure 1 we have a code snippet with task T1 that depends on variables a and b 

and has two subtasks T1.1 which depends on a and T1.2 which depends on b, task T2 which 

depends on a and task T3 which depends on T3. Without the weakwait construct T1 would need 

to include a #pragma omp taskwait at the end of the task body. T2 and T3 would wait until the 

completion of T1 which would happen only after T1.1 and T1.2 have finished. With the 

weakwait clause once the body of T1 exits only the live dependencies of T1 need be enforced, 

i.e., if T1.1 has not yet finished the dependency from T1 to T2 becomes a dependency from 

T1.1 to T2, so that T2 can start even if T1.2 has not finished yet. This allows the discovery of 

more parallelism dynamically. 

In the previous example, in order to release dependencies this way task T1 needs to finish 

execution. However, it might be useful to release dependencies while the body of the parent 

task is still executing, e.g., the task knows that it will use some data only at the beginning. In 

order to enable this functionality OmpSs-v2 introduces a new directive: 

 #pragma omp release depend(é) 

which releases all the dependencies in the list of the depend clause. 

2.1.1.2 Weak dependencies 

Section 2.1.1.1 presents how OmpSs-v2 allows the early release of dependencies from inner to 

outer nesting-levels in a fine-grained fashion. However, where nesting is used, it is likely that 

the outer nesting levels define dependencies in a coarser granularity. Even if some elements of 

the depend clause of the outer task is only needed by its subtasks, its execution and eventually 

the creation of the subtasks will be deferred and discovery of parallelism, suspended. 

OmpSs-v2 extends the depend clause with the weakin, weakout and weakinout dependency 

types. Semantically, these types define dependencies equivalent to the non-weak types. When 

a task declares weak dependencies, though, it signifies that it will not access itself the data, only 

its subtasks will do, hence the task is allowed to start its execution, which will allow it to create 

the subtasks.  

As a result, early release of dependencies and weak dependencies, together in action can 

potentially result in increased parallelism discovery while expressing the applications using 

nesting which is very natural for a large number of problems. 

2.1.2 Nanos6 runtime system on distributed memory 

OmpSs-v2 is implemented in Nanos6 the successor of the Nanos++ runtime system. The choice 

to implement a new runtime system, rather than implementing OmpSs-v2 as extensions in 

Nanos++, is guided from the requirements of backwards compatibility for OmpSs applications 

as well as better maintainability of the Nanos6 codebase in comparison with Nanos++.  

Nanos6 provides a new version for the distributed memory runtime implementation in the 

ExaNoDe project, which incorporates the features of the OmpSs-v2 programming model and 

introduces a novel memory model, task offloading mechanism and communication layer. 

 

2.1.2.1 Nanos6 memory model 

The distributed memory version of OmpSs developed in the ExaNoDe Project provides a 

Partitioned Global Address Space (PGAS) model abstraction layer for the memory view of the 
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system. This OmpSs memory layout is general-purpose and applicable to an implementation 

for any cluster, but it enables future work, in ExaNoDe or EuroEXA, to take advantage of the 

UNIMEM shared memory architecture. The OmpSs memory model presents the distributed 

physical address space of the nodes involved in the computation as a single address space which 

is accessible by every compute node of the cluster. As a result, on conventional clusters that 

require physical memory copies among nodes of the cluster, the programmer does not need to 

explicitly program these data transfers, as they are handled by the Nanos6 distributed memory 

runtime using MPI. The current implementation will target UNIMEM via the UNIMEM-

optimized MPI library. We will consider the potential benefit of future optimizations to use the 

native UNIMEM API to eliminate the data transfers on UNIMEM platforms, while maintaining 

software compatibility with traditional distributed memory clusters.  

 

 

Figure 2: Virtual Memory (VM) address space representation of cluster nodes managed by Nanos6. 

Figure 2 shows the layout of the virtual memory of the cluster nodes managed by the Nanos6 

runtime system. During initialization Nanos6 maps in every node a virtual memory region 

(VMR) large enough to handle the maximum memory requirements of the OmpSs application. 

The starting address of these VM regions is the same on every node. This is necessary in order 

to facilitate the transfer of data across nodes without having to apply address translation across 

nodes. Memory requests are served through custom allocators of the Nanos6 runtime system. 

Subsequently, Nanos6 divides each VMR into two distinct regions, which have different 

allocation semantics.  

The lower addresses of the VMR are reserved for conventional local memory allocations, i.e., 

stack and normal heap allocations. Nanos6 divides this set of addresses equally among the 

nodes of the cluster. This means that every address within this region is used to store the local 

data of one particular node of the cluster. The rest of the nodes of the cluster use these addresses 

whenever they need to bring local data of the said node, temporarily. This simplifies the process 

of moving data around the cluster, since it eliminates the need for address translation. 

The higher addresses of the VMR are reserved for distributed allocations. An allocation from 

this memory region is implemented inside the runtime system as a collective operation across 

all nodes of the cluster. Figure 3 describes the operation of a distributed allocation. Firstly, the 

file:///D:/../../Library/Containers/com.microsoft.Word/Data/images/nanos6-mem-model.pdf
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whole distributed array is allocated in every cluster node at exactly the same memory range 

ὴὸὶȟὴὸὶίὭᾀὩ. Subsequently, each node becomes the home node of one part of the array. 

This means that by default, the latest produced data of a subrange of the array will be stored in 

its home node. If during execution, a range ίόὦὶὥὲὫὩῂὸὶȟίόὦὶὥὲὫὩῂὸὶίὭᾀὩ needs to 

be used by a task that is scheduled on a node different than its home node, a memory transfer 

will be initiated from the home node of the subrange. When a node fetches a range of data from 

its home node it uses the same range of addresses as its home node does. Those virtual addresses 

are available also locally, since during the allocation of the array these addresses were allocated 

on every node of the cluster. In this way, Nanos6 does not have to do address translation when 

it moves distributed data across the cluster nodes. The way an array is distributed to home nodes 

is controlled by the programmer who can choose the distribution policy. Information about the 

distribution policy of arrays can be used later by the Nanos6 scheduler in order to make 

decisions based on locality criteria. Thus the distribution policy is meant to be chosen according 

to the access patterns of the application. 

 

 

Figure 3: Distributed allocation in Nanos6 is a collective operation. The array is allocated first on all nodes 

and then logically distributed across them 

2.1.2.2 Nanos6 execution model 

The memory model is coupled with the task-parallel semantics of OmpSs for defining 

computations. The programmer defines tasks i.e., computational units that operate on ranges of 

data located on the address space.  

ptr

size

Node 1

ptr

size

Node 2

ptr

size

Node 3

ptr

size

Node 4

/ *  Phase 1:  al l ocat e memor y * /

ptr

size

Node 1

ptr

size

Node 2

ptr

size

Node 3

ptr

size

Node 4

/ *  Phase 2:  di st r i but e ar r ay * /



 

 

Project No. 671578 ExaNoDe Deliverable D3.2 Page 7 of 37 

Nanos6 uses a masterïslave architecture. The OmpSs application begins executing on the 

master node, similarly to the shared-memory flavour of the runtime. The code is executed 

serially and whenever a #pragma omp task  directive is encountered a new task is created 

and becomes available for concurrent execution once its dependencies are resolved. When 

running on distributed memory, the scheduler of Nanos6 can also decide to offload tasks to 

slave, or else remote, nodes once they are ready for execution, i.e., all their strong dependencies 

have been resolved.  

During execution, the scheduler takes decisions regarding the node onto which the task should 

be offloaded. Before a remotely-executed task executes its body function, the runtime system 

copies any nonïnode-local data to the node that the task will execute on. The programmer needs 

to declare all the dynamically allocated data that the task uses and the way the task will handle 

them using the dependencies clauses: in(), out(), inout(), weakin(), weakout() and weakinout(). 

When executing on distributed memory, in addition to declaring the dependencies among tasks, 

these clauses provide the necessary information about data transfers that must be performed by 

the runtime before executing a task. 

 

Figure 4: Nanos6 task offloading. A ready task can be offloaded to a remote node. All tasks with a 

dependency on the offloaded task will wait until the offloaded signals its completion. 

Figure 4 presents an example of the execution model of Nanos6 for distributed memory 

systems. In this example, when task T2 becomes ready for execution, the scheduler decides to 

offload it to Node 2. The original task is marked as an offloaded task and it remains in the 

memory of Node 1 so that the dependencies within Node 1 are preserved. Task T3 on Node 1 

has a dependency on T2 and as a result it will not be ready until the T2 is marked as complete. 

This will happen once the remote T2 sends a message to the offloaded T2 signaling its 

completion. Along with the task T2, Node 1 sends to Node 2 information regarding the location 

of all the data that T2 takes as input (in() and inout() dependencies). Once the access information 

for all the input arguments of the remote task T2 on Node 2 is received the task T3 is ready for 

execution. In addition, the remote T2 creates three subtasks. The first two are executed locally, 

but T2.2 is offloaded by the scheduler from Node 2 to Node 3. The parent task T2 will not be 

marked as complete until the remote T2.2 finishes. When T2.2 on Node 3 finishes it sends a 

message to Node 2 along with access information about all the output dependencies i.e., out() 
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and inout(). This information is then propagated from Node 2 to Node 1. At this point T3 can 

start execution, knowing the location of all the output accesses of T2. This example shows how 

Nanos6 uses the dependency system to propagate information regarding the location of all the 

data of the OmpSs application. This scheme allows us to handle all the data transfers without 

the need of a software directory, which simplifies the design and implementation and minimizes 

the amount of communication among the cluster nodes. 

2.1.2.3 Communication Layer 

The implementation of Nanos6 requires communication among the cluster nodes for 

exchanging command and data transfer messages. Command messages include all the 

messages for offloading tasks, synchronization of nodes, sending information regarding the 

location of data and initiating data transfers. Data transfer messages are used to transfer data 

regions among nodes.  

 

The communication layer of Nanos6 operates as an abstraction layer that decouples the rest of 

the components of the runtime system from the actual library that is used to implement the 

actual network transfers. This design is very modular since it allows the network 

communication layer to be transparently implemented on top of different libraries and allows 

the user to choose the most desirable implementation at runtime. 

 

For ExaNoDe we have implemented the communication layer of Nanos6 on top of standard 

MPI. This provides compatibility with all HPC systems that implement the MPI standard, 

making it a very appealing choice. In particular, the port of MPI to the UNIMEM architecture 

will allow Nanos6 to run on any UNIMEM platform without modifications. In future work, in 

ExaNoDe or EuroEXA we will consider the benefit of eliminating the data transfer messages 

using the native UNIMEM API, while maintaining software compatibility with traditional 

distributed memory clusters. 

2.1.2.4 Preliminary results 

 

Figure 5: Scaling of a matrix vector multiplication operation implemented in OmpSs with Nanos6 

Clusters. 
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Figure 6: Scaling of a matrix vector multiplication operation implemented in MPI  

We have performed an evaluation of the initial implementation of Nanos6 using various 

BLAS kernels ported to OmpSs-v2, and compared them with the equivalent MPI 

implementations. Figure 5 and Figure 6, respectively, show the scaling of a matrixïvector 

multiplication operation in OmpSs and MPI measured on the MareNostrum 4 supercomputer. 

The results show that, compared with MPI, Nanos6 currently faces scalability issues when the 

problem sizes increase. This could be attributed to various issues, e.g. the scheduler 

implementation of Nanos6 or overheads related to the offloading of tasks to nodes and 

caching data to remote nodes. We are currently investigating these bottlenecks with the 

assistance of Extrae and Paraver, which are the tracing and performance analysis tools that 

have been developed from BSC and are being integrated in Nanos6. 

 

2.2 OpenStream 

This section was contributed by UOM. 

2.2.1 Introduction to OpenStream 

OpenStream [12] is a task-parallel, data-flow programming model implemented as an extension 

to OpenMP. It is designed for efficient and scalable data-driven execution; shared-memory 

programming is allowed for fast prototyping, essentially following the OpenMP syntax, but 

additional information must be provided by the programmer, using a dedicated syntax, in order 

to take advantage of OpenStream optimizations. In particular, OpenStream enables 

programmers to express arbitrary dependence patterns, which are used by the runtime system 

to exploit task, pipeline and data parallelism. Each data-flow dependence is semantically 

equivalent to a communication and synchronization event within an unbounded FIFO queue. 

Pragmatically, in the original shared-memory instantiation, this is implemented by compiling 

dependences as accesses to task buffers dynamically allocated at execution time: writes to 

streams result in writes to the buffers of the tasks consuming the data, while read accesses to 

streams by consumer tasks are translated to reads from their own, task-private buffers. 

Compared to the more restrictive data-parallel and forkïjoin concurrency models, task-parallel 

models enable improved scalability through load balancing, memory latency hiding, mitigation 

of the pressure on memory bandwidth, and as a side effect, reduced power consumption. 



 

 

Project No. 671578 ExaNoDe Deliverable D3.2 Page 10 of 37 

Currently developed at UOM, OpenStream further takes advantage of the information provided 

by programmers on task dependences to aggressively optimize memory locality through 

dynamic task and data placement.  

 

2.2.2 Exploiting UNIMEM in OpenStream 

OpenStream relies on a private-by-default strategy for handling communication between tasks, 

which means that despite a shared-memory view from the programmerôs perspective, 

communication is more akin to message-passing than to concurrent shared-memory 

communication. This is made possible by requiring programmers to provide additional 

information on how data is accessed within tasks. This information is used at compile time to 

generate the appropriate modifications to memory accesses to achieve Dynamic Single 

Assignment (DSA). OpenStream tasks compute on data available in input buffers and write 

data in output buffers, each belonging to a unique task reading from them. This data-flow 

execution model is a perfect match for the UNIMEM memory model, providing a 

straightforward mapping of communication on top of RDMA and minimizing the reliance on 

global atomics. Furthermore, the privatization of data communicated between tasks is the key 

to enable the runtime to fully control the locality of memory allocation and of task placement. 

OpenStream relies on the inter-node atomics provided in the UNIMEM memory model to 

implement low-level runtime algorithms, such as dynamic load balancing, inter-node 

synchronization and locality-aware scheduling and memory allocation. This is further discussed 

in Section 4.2. 

Further optimization of the behavior of the OpenStream runtime will be possible if UNIMEM 

permits RDMA and atomics to be used within the same memory regions. This has been one of 

the key challenges to port OpenStream as it has required splitting the data-structures used for 

managing memory and task placement across separate memory regions while ensuring that data 

and meta-data remain coherent.  

The development of concurrent data-structures and algorithms on memory models that do not 

provide sequential consistency is patently error-prone and time consumming. Testing poses 

significant challenges as errors may only manifest when specific interleavings of memory 

operations occur ï behavior which can be impossible to exhibit on emulation or on prototypes 

where the timing is substantially different than the target hardware. This problem is further 

compounded when the memory model is not uniform across all execution units as node-local 

behavior will differ from inter-node behavior. We expect that a substantial number of issues are 

likely to become apparent when executing on increasingly advanced hardware that allows more 

memory interleavings to occur. 

For example, we expect that the behavior of atomic operations provided in UNIMEM will have 

an impact on our work-stealing load-balancing algorithm if there is an asymmetry between the 

success rates of local and remote atomic operations. Such an asymmetry would introduce a bias 

in the way our algorithm works, which in turn would translate into poor work distribution across 

the machine. As we further discuss below, this is critical for OpenStream programs as we do 

not assume an initial distribution of data and work across the machine.  

 

2.2.3 Implementation 

 

Communication is automatically managed by the OpenStream runtime system. Part of the 

work is done at compilation time, by privatizing all data dependences between tasks and 

introducing runtime hooks for setting up remote memory operations. This step enables the 

runtime to determine which data is locally available and which data needs transferring, then 

initiate the memory transfers and determine when all data required for execution is finally 
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available. As no worker is waiting for data to be transferred, a good load balance will ensure 

that computation and communication is fully overlapped. 

 

Memory and work placement are driven by two main algorithms [13] [14]. The main 

mechanism for nodes and workers to acquire work is randomized work-stealing. This allows to 

balance the workload across compute resources, but may be inefficient with respect to the 

amount of communication it generates as tasks are randomly acquired by workers across the 

entire machine. Dependence-aware memory allocation and work-pushing allow to reduce the 

amount of communication required by moving tasks to nodes that will require the least data 

movement. 

 

Multiple node startup is managed directly within the OpenStream loader rather than relying 

on an external tool, and uses the remoteFork facility. The startup procedure instantiates a core 

process on each node and initialises the OpenStream communication and scheduling data 

structures, then allows the local processes to set up a team of worker threads on each node. 

There is no initial distribution of work as OpenStream relies primarily on hierarchical work-

stealing for load-balancing. As soon as a node is ready to start executing tasks, it starts 

attempting to steal work from neighboring nodes. 

In later stages of execution, once data is distributed across the machine, locality-aware work-

pushing will complement work-stealing by sending tasks that require remote data to be executed 

on the node where most of their inputs are located. While this approach helps reduce the amount 

of data movement overall, it may lead to poor load-balance if it is used on its own as it will 

have a tendency to concentrate data and work on a subset of nodes. Randomized work-stealing 

is therefore still required to ensure that computation is reliably distributed across all nodes, 

further enabling the possibility of seamlessly bringing new nodes online during execution. 

 

2.2.4 ExaNode Mini-app 

Due to the availability of the HydroC mini-app in multiple parallel programming models, 

including a C+OpenMP version, this has been the primary target for porting to OpenStream. 

The initial translation from OpenMP parallel loops to OpenStream tasks relying on shared 

memory communication was straightforward and yields identical performance results on 

uniform shared memory multi-core platforms. This compatibility behavior is allowed in 

OpenStream to facilitate porting efforts, however, this version cannot be compiled directly to 

execute on multiple  UNIMEM nodes.  

In a second step, the OpenStream implementation was converted from shared-memory data-

parallel execution to pure data-flow, where tasks communicate exclusively through privatized 

streams. This step was complicated by the frequent use of shared memory pointer arithmetic 

when communicating partial results between different computation phases of HydroC, but it is 

essential to enable multi-node execution and to allow showcasing the advantages of UNIMEM 

RDMA communication overlapping computation.  

The porting effort has now shifted towards optimizing the data-flow implementation, in 

particular focusing on eliminating over-synchronization between computation steps, and 

towards integration in the UNIMEM emulation framework and the physical prototypes. 

 

2.2.5 Towards FPGA integration 

To exploit the Field-Progammable Gate-Arrays (FPGAs) that represent the bulk of the 

computational power in the ExaNoDe system, we have made the decision to extend 

OpenStream with OpenCL support, enabling programmers to specify multiple versions for the 

work function of each task, written either in C (possibly wrapping code in other sequential 
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languages) or in OpenCL. These versions are managed by the OpenStream dynamic scheduler, 

which decides at runtime on the best target for each kernel.  

Currently, OpenStream is able to schedule the different kernel versions across CPU cores and 

multiple, heterogeneous OpenCL devices (e.g., CPU cores + AMD APU + discrete GPU) and 

we are currently optimizing the scheduler heuristics for dynamically adapting the target device 

based on the observed cost of communication and compute time on each available resource for 

the different types of tasks.  

This preliminary work has cleared a path to the next step, which is to integrate the OpenStream 

environment with the EcoSCALE high-level synthesis toolchain to take advantage of the Xilinx 

Ultrascale+ FPGAs that will be available on the ExaNoDe system. The design of the current 

implementation was chosen to maximise the flexibility of the OpenStream framework and we 

expect to be able to integrate FPGAs in the OpenStream resource model and scheduler. 

 

2.3 Parallel runtime support 

This section was contributed by UOM. 

2.3.1 Introduction 

In order to maximize the efficiency of execution, both in terms of performance and energy, and 

to exploit fully the massive parallelism provided by the ExaNoDe architecture, it is essential to 

optimize performance-critical aspects of the runtime. In particular, UOM is focusing on 

dynamic load balancing through work-stealing, dynamic scheduling for memory locality and 

synchronization. 

2.3.2 Optimized runtime support 

UOM has ported the current state-of-the-art implementation [14] of work-stealing dynamic 

load-balancing based on Chase and Levôs algorithm for intra-node load balancing, as well as 

the fastest hybrid barrier synchronization implementation [15] for a single node. This first step 

is essential even with the new UNIMEM memory model because these algorithms are very 

sensitive to latency and therefore cannot rely on a uniform view of the memory. 

In a second step, UOM has implemented a functional unoptimized work-stealing library on top 

of UNIMEM for inter-node load balancing, which is integrated with the intra-node algorithm 

in the form of hierarchical work-stealing, whereby work is sought in widening neighbourhoods. 

This implementation relies on the remote atomic operations provided by UNIMEM, and for 

which UOM has developed an emulation layer that integrates with FORTHôs RDMA emulation 

library. Furthermore, to minimize the overheads incurred by memory transfers between nodes, 

UOM has developed locality-aware allocation and scheduling optimizations that deliver above 

94% locality and up to 99% locality and 5× speedup over hierarchical work-stealing on 24 

nodes [14]. While this study was conducted on a classical NUMA machine, the results are likely 

to translate into similar locality benefits, albeit with new tradeoffs that will require further 

investigation, on an ExaNoDe platform once ported. 
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3 Communication Libraries 
Two communication libraries, the message passing MPI and the partitioned global address 

space library GPI, will use UNIMEM. Compared to the runtime systems the inter-node 

communication with the UNIMEM communication will be explicit. Thus a direct coupling 

between MPI/GPI components and UNIMEM becomes center-stage in this section. For GPI the 

focus is on one-sided asynchronous messages, whereas the MPI work will be foucessed on 

message passing. 

3.1 GPI 

This section was contributed by FHG. 

3.1.1 Introduction to GPI 

The Fraunhofer GPI (Global Address Space Programming Interface) open-source 

communication library is an implementation of the GASPI standard [16], freely available to 

application developers and researchers. GASPI stands for Global Address Space Programming 

Interface, and it is a Partitioned Global Address Space (PGAS) API that aims to provide extreme 

scalability, high flexibility and failure tolerance for parallel computing environments. 

GASPI aims to initiate a paradigm shift from bulk-synchronous two-sided communication 

patterns towards an asynchronous communication and execution model. It leverages remote 

completion and one-sided RDMA-driven communication in a Partitioned Global Address 

Space. The asynchronous communication enables a perfect overlap between computation and 

communication. The main design idea of GASPI is to have a lightweight API ensuring high 

performance, flexibility and failure tolerance. More details about GPI can be found in 

deliverable D3.1 or on the GPI web page (http://www.gpi-site.com/gpi2/).  

3.1.2 Exploiting UNIMEM in GPI 

 

 

Figure 7: PI Building blocks for ExaNoDe architecture support 

 

The UNIMEM independent modules (Runtime Environment and GPI Groups) can be 

developed/ported without any knowledge of the final hardware characteristics and interface 

descriptions of the ExaNode/UNIMEM architecture. Both modules are able to run over a 

secondary network using TCP/IP for data exchange. This makes it possible to start early 

implementations of these components within the ExaNoDe project. The communication 

http://www.gpi-site.com/gpi2/
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interface for these modules will be RDMA over Sockets, one of the transport layers of 

UNIMEM. 

Both independent modules have now been ported to the aarch64 architecture and can used on 

top of socket-interfaces of UNIMEM.  

All UNIMEM-dependent modules, such as pinned memory segments, global atomics (and 

related memory areas), passive RDMA, collectives and one-sided reads and writes managed by 

IO-queues are hard to implement without detailed knowledge of the behaviour of the 

interconnect interface. Therefore an emulation library has been developed that implements most 

of the current functionality as described in [17]. This emulation library allows early tests on a 

standard x86_64 SMP system without the need to have real prototype hardware available on 

site. The remote system provided has proven not to be stable enough to run integration tests. 

All dependent modules have been implemented on top of the emulation framework and early 

tests were successful.  

Some design decisions made by Forth for the user level RDMA Interface of UNIMEM will not 

allow GPI Applications to run directly on this layer without re-compilation and re-coding. In 

addition to that, the prototype systems and the available UNIMEM libraries are not yet stable 

enough for developments like GPI or practical tests and benchmarks. To ensure that a working 

GPI version for the ExaNoDe architecture is ready at the end of the project, we have ported the 

dependent GPI Modules from our emulation framework to the socket layer of UNIMEM. At 

the current stage of the project it is crucial to be able to start gpi_run. Here further work on 

UNIMEM needs to be done (as pointed out in Section 3.1.5. 

This workaround allows us to further improve the individual GPI-Submodules and to continue 

the developing process without time-consuming delays (Erreur  ! Source du renvoi 

introuvable.). A running GPI communication library is the basis for the development of one-

sided micro benchmarks and mini-applications on top of the ExaNoDe hardware. 

 

Figure 8: GPI Building Blocks of UNIMEM  
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3.1.3 Design of preliminary software implementation 

 

The following sub-chapters are describing the implementation of dependent GPI Modules 

(Erreur  ! Source du renvoi introuvable.) on top of UNIMEMs socket layer. 

3.1.3.1 GPI Segments 

GPI Segments can be created and deleted by using standard system routines like e.g. malloc 

and free. There are no size or alignment constraints on these segments as we have today with 

RDMA memory segments on most other interconnects. The allocation time will also be fast as 

we can use copy on write (cow) mechanisms compared to pre-pinned continuous memory 

segment allocations.  

3.1.3.2 GPI IO -Queues 

GPI applications trigger one-sided RDMA reads and writes by placing communication tokens 

into GPI IO-Queues. The status of a single token or a group of tokens can be determined at any 

time by calling a wait operation on a given queue. The wait operation returns a status array 

filled with the status of all completed read and write operations at that time. To enable non-

blocking functionality for all worker threads within posting and wait calls, a background 

communication thread will be spawned internally. This special thread takes care of all the 

ongoing communications on all GPI queues and fills up the status arrays. As the communication 

takes place on top of sockets, the thread does not have to poll for io-operations or completions. 

The operating system can schedule this thread when data can be sent or peer data have received 

for one of the active queues.   

3.1.3.3 GPI Collectives 

In a first design GPI Collectives can be implemented by using internal GPI Segments and IO-

Queues as described in Sections3.1.3.1 and Erreur  ! Source du renvoi introuvable.3.1.3.2. 

3.1.3.4 GPI Global Atomics 

GPI currently defines two operations for Global Atomics: Atomic increment and atomic 

compare and swap (cas). With these two atomic operations in place, global spinlocks can be 

implemented which can be used to protect global data-structures and variables. As the current 

semantic for GPI Global Atomics require the immediate return of the previous values, standard 

IO-Queues cannot be used due to the separation of posting and wait calls. Instead a special IO-

Queue will be implemented internally for atomics that combines and interlocks the posting and 

wait calls. 

3.1.3.5 GPI Passive RDMA 

Passive RDMA operations cannot be fully offloaded. They need some support from the 

Operating System so that passive waiting (sleeping) processes/threads can be informed when 

matching communication data is available. To implement this kind of data transport a special 

passive IO-Queue as described in 3.1.3.2 will be implemented. For this special IO-Queue the 

background thread will not fill up any completion arrays. Instead it will trigger one of the 

system calls like select, poll or epoll to inform waiting worker threads (waiting in 

GPI_PASSIVE_RECEIVE) about available data. The location, status and size of the data is 

returned to the caller directly from GPI_PASSIVE_RECEIVE.  
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3.1.3.6 Parallel Process Startup 

A parallel startup mechanism like mpi_run or gpi_run is still not available yet and standard 

tools and scripts (e.g. process startup via ssh) cannot be used on UNIMEM. UNIMEM-

Processes need to have some kind of parent->child relationship to inherit access rights to 

memory segments. In addition, environment settings/variables and command line arguments 

must be communicated to the remote node and setup correctly before a process inside a parallel 

topology can start. Here we are still in the process of defining an interface that fulfills the 

requirements for GPI and MPI to start up remote processes.  

3.1.4 Suitable ExaNode Mini-app 

Beside the GPI test suite a stencil kernel application (such as an BQCD simplified kernel) will 

be implemented to demonstrate the strength of overlapped and offloaded data communication 

on ExaNoDe/UNIMEM.  

3.1.5 Current Status and Limitations 

 

Current Unimem Limitations for single-sided Commmunication (GPI-2) are: 

¶ Single memory segment: all GPI- based applications are using at least two or more memory 

segments during runtime to switch between communication buffers and computation 

segments (double buffering approach for asynchronous programs). This limitation has been 

present in the emulation library but is resolved in the UNIMEM software and still needs to 

be tested. 

¶ Size limitation of the memory segment: 256mb. This size is much too small for real world 

applications, which typically use up to 16GB to 32GB per node, doing overlapped 

computations and communications. 

¶ Single communication channel: at least two communication channels are needed to 

implement overlapped communication: One to post current IO-operations on and another 

one to poll for previous posted IO-operations as described above. 

¶ Size limitation per IO-operation: 8mb-1byte: for large communication sizes this will 

produce a lot of overhead (several IO-operations). Stencil code algorithms might be able to 

run on such a system without any changes, however especially modern machine learning 

applications might need to use 32-64MB.  

¶ Single RDMA status request: it would be much more efficient to request the status of an 

array of communication-identifier at once. Single RDMA status requests produce a lot of 

context switches and other overhead. 

¶ The RDMA functionality should be implemented mostly in userspace and not in 

kernelspace. 

¶ Atomic operations in UNIMEM cannot use the same memory segments as RDMA IO-

operations.  Since most of the GPI based applications run atomics and RDMA operations 

out of the same memory segment, this limitation does not allow pre-compiled GPI-2 

binaries to run on top of UNIMEM. 

¶ Atomic operations on UNIMEM need some kind of relationship between affected 

processes. Access-tokens are distributed over a special startup mechanism which is not 

compatible with mpi_run or gpi_run. Here a startup procedure similar to mpi_run or gpi_run 

is needed to establish a working environment like on any other computing system today. 

¶ The remote UNIMEM prototype systems are not yet stable enough to do intensive tests. To 

get significant performance data for evaluation, a stable UNIMEM environment is needed.  

The above mentioned limitations will be discussed with the FORTH group.  
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Figure 9 and Figure 10 show first measurements on the remote UNIMEM prototype, namely 

the GPI-2 bandwidth and latency. The data have been taken on the TRENZ board with the 

UNIMEM software stack (kernel driver and user-level library). For the latency and bandwidth 

measurement for each measured point the average of 1000 samples has been taken. For latency 

a classical ping-pong mechanism was employed, completion time is the time that the pong has 

been received. For the bandwidth measurement the completion has been signalled by a signal 

received by UNIMEM. The data values are consistent with the values reported in the MPI 

implementation in Section 3.2.3. However our measurements start with smaller message sizes. 

The latency and bandwidth can be compared with measurements taken with Infiniband FDR a 

few years back both for GPI-2 (and MVAPICH2-1.9). The plots can be found at the GPI web 

page1 . The bandwidth for Infiniband FDR saturates at messages sizes about 4kbytes at a 

bandwidth of 6000 MB/s. The bandwidth is about a factor 50 higher than measured on the Trenz 

board. The latency of small messages with Infiniband FDR is about 1microsec for 2bytes up to 

about 2microsec for 2kbytes. This is about a factor of 250 faster than the latency measured with 

GPI over UNIMEM on the Trenz board.  Further optimized capabilities with the GPI 

implementation are going to be implemented during the coming months.  

 

Figure 9: GPI-2 bandwidth on UNIMEM Prototype system (Sockets over Unimem) 

                                                 
1 GPI web page: http://www.gpi -site.com/gpi2/benchmarks/  



 

 

Project No. 671578 ExaNoDe Deliverable D3.2 Page 18 of 37 

 

Figure 10: GPI-2 latency on the UNIMEM Prototype system (Sockets over UNIMEM) 

3.1.6 FPGA Prototype System 

The Exanode System drags it compute performance out of Field-Programmable-Gate-Arrays 

(FPGA) to be competitive with state-of-the-art architectures configured with e.g. GPUs or other 

Accelerators. We are currently in the phase of setting up a small test-system consisting of Xilinx 

Ultrascale+ FPGAs and ARM 64bit cores in one package. This platform will be used to 

implement a GPI-Interface that is able to offload compute kernels to the FPGA and to monitor 

the external program execution. We will also evaluate different development environments for 

these FPGA kernels to be able to select the best workflow that integrates optimal into the GPI 

Build-Environment.  

3.2 MPI 

BSC has proposed to the Consortium that the high-level architectural design of the MPI port 

over UNIMEM should lie on the recently-emerged OpenFabrics Interfaces (OFI)2, an open 

generic low-level networking standard for HPC. This is in accordance with current efforts in 

the major MPI implementations (Intel MPI, MPICH, Open MPI). The effort is performed to 

overcome the well-known performance limitations of TCP, so we expect to improve upon an 

MPI over TCP implementation and, when finished, offer minimal overhead with respect to 

direct use of UNIMEM. 

3.2.1 State-of-the-Art MPICH 

Currently MPICH, the MPI implementation decided to be the primary target in this project, is 

undergoing a major code rewriting on its Channel layer, moving from CH3 to the new CH4, 

with major improvements on scalability and latency. Part of this effort is aimed at better 

exploiting HPC networking capabilities, by providing full communication semantics to the low-

level network interface. This enables highly efficient MPI communications on top of OFI. 

Currently in alpha 2 version and already passing most of the wide MPICH test suite on x64 

                                                 
2 https://ofiwg.github.io/libfabric  
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architectures, a stable release is foreseen to be announced in November 2017 during the SC17 

conference. 

3.2.2 MPI over UNIMEM Architecture 

BSC is developing an OFI port (called a ñproviderò) on top of the UNIMEM API. Figure 11 

shows the major high-level architectural components of the state-of-the-art MPICH 

implementation described in the above section, and the light blue box represents the main 

component that BSC is developing: the UNIMEM OFI provider. Figure 12 depicts a future 

more optimised implementation of the UNIMEM version of MPI, with optimised collective 

communications that extend the OFI API. At this point there is no expectation of having to 

modify any layers of the MPI stack above OFI. 

Developing an OFI provider instead of an integrated solution has the advantage that the 

UNIMEM OFI provider may be usable by other MPI implementations and potentially even 

other runtimes implementing the OFI API. BSC is currently targeting development under 

MPICH because of its current know-how and established contacts with the developing group, 

and the portability premise will be checked using Open MPI on a more advanced stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 Development Approach and Current Status 

For practical reasons, rather than starting the implementation of the UNIMEM OFI provider 

from scratch, BSC chose to start development based on the OFI TCP/sockets provider, and 

progressively replace TCP/sockets communication with communication over the native 

UNIMEM API. This allows incremental development, with full functionality always provided 

by TCP/sockets, while taking advantage of improved performance for the features that have 

been optimized natively over the UNIMEM API. 

 

Currently the OFI provider is able to transfer MPI_Send data payloads over native UNIMEM. 

Discussions between BSC and FORTH resulted in improvements to the UNIMEM API, which 

will benefit MPI and the other runtimes/communication libraries: 

 

(1) Until July 2017, the prototype provided only a single buffer allocation registered with 

the communication hardware. This was fixed in July 2017, and the change was 

communicated point-to-point to the engineer at BSC when the issue was discussed at 

the end of August 2017. This will improve performance for MPI and the other runtimes 

Figure 11: State-of-the-art MPICH  

design, showing UNIMEM OFI 

provider  

Figure 12: Future optimized 

UNIMEM MPI  implementation 

with overriding collectives 
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and communication libraries by the end of the project, but the change arrived too late to 

incorporate into the codebase discussed in this deliverable.  

(2) The previous version of the UNIMEM API, which was based on the cDMA hardware 

block, had no memory registration API, which prevents registering user-provided 

memory buffers. An updated version of the API takes advantage of new features of the 

zDMA hardware block on the UltraScale+ SoC. This changes the semantics of the 

UNIMEM APIs, and the more powerful APIs will result in a zero-copy MPI 

implementation, improving MPI usability and potentially performance. This requires 

some redesign of the UNIMEM OFI provider to take advantage of the new APIs. This 

does not affect the schedule for delivery of the final optimized MPI library by M36. 

 

These limitations are under continuing discussion with FORTH. In addition, there are still 

issues with the stability of the remote UNIMEM prototype. To get significant performance data 

for evaluation, a stable UNIMEM environment is needed.  

 

3.2.4 Preliminary results 

Figure 11 and Figure 12 show our first performance results on the Juno prototype, comparing 

the use of MPICH over an OFI TCP provider with our prototype of the UNIMEM OFI provider 

(note that TCP support is in turn implemented over UNIMEM). To avoid system noise, every 

measurement represents the average of 50 round-trip message exchanges. These experiments 

are executed 30 times and the average is represented. 

Figure 11 shows roundtrip latency for small message sizes. We can see that the pure TCP 

sockets provider exposes in general lower latency than our under-development UNIMEM 

provider. We expect to overcome this limitation once we move from TCP-based notification to 

using the Mailbox functionality for this purpose. The figure shows that this penalty is overcome 

by the much faster data payload transfers for sufficiently large transfers, starting at 128 KB. We 

have not yet identified the reasons for the high latency exposed by the TCP provider at 1 KB 

data payload. 

 

Figure 11: Roundtrip latency for small message sizes. 

Figure 12 shows one-way throughput (defined as 1 / roundtrip latency * 2) for large message 

transfers. We can see how TCP flattens at 100 MB/s with a 2 MB data payload while the 

UNIMEM provider is consistently over 3x faster, yielding up to about 370 MB/s. Note that 

TCP implementations over low-level high-performance networking APIs are widely known to 
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pose significant overheads due to factors such as additional memory copies, context switches 

to Operating System kernel calls, and the intrinsics of the TCP protocol itself. 

 

 

Figure 12: Throughput for large data payloads. 

In summary, the preliminary UNIMEM implementation of MPI has higher latency than the 

baseline MPI over sockets, for small messages, but this penalty is overcome for messages larger 

than about 64 KB). The preliminary UNIMEM implementation achieves greater than 3x the 

bandwidth for messages over about 2 MB, reaching 370 MB/s. 

 

We have not yet been able to understand the precise reasons for the excessive latency, but we 

intend to improve the implementation using the new version of the UNIMEM RDMA API, 

which makes use of the zDMA hardware block, and has slightly different semantics (providing 

user-level initialization of RDMA transfers), which will avoid the need for the MPI library to 

allocate specific buffers for RDMA transfers, enabling a zero-copy implementation. This will 

improve performance but it potentially requires major modifications to the MPI 

implementation. We will also make use of the Mailbox API. This is expected provide a 

complete and high-performance OFI provider on top native UNIMEM only, covering the entire 

MPI 3.1 Standard. 

 

3.3 Further Requirements of the runtimes and communication 
models on the underlying platform 

The runtime systems and programming models have specified their requirements on the 

underlying UNIMEM system in their respective sections. Here we collect the list of 

requirements:  

 

3.3.1 Requirements of OmpSs 

OmpSs will use the underlying MPI programming model which will then connect to UNIMEM. 

Therefore the requirements of OmpSs itself within the ExaNoDe project on UNIMEM are 

modest, however the MPI requirements need to be incorporated.  
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3.3.2 Requirements of OpenStream 

¶ OpenStream uses UNIMEM directly. To work efficiently OpenStream requires the support 

of RDMA and atomics by UNIMEM.  

¶ For OpenStream it is important to be able to test on larger and advanced hardware systems 

to study the impact of UNIMEM on the OpenStream work stealing algorithm which ensures 

load balancing. OpenStream expects that an asymmetry can occur due to the success rates 

of local and remote atomic operations. OpenStream will complement the work-stealing 

algorithms by sending tasks that require remote data to be executed on the node where most 

of their inputs are located to reduce communication overall.  

3.3.3 Requirements of GPI 

¶ Single memory segment: all GPI- based applications are using at least two or more memory 

segments during runtime to switch between communication buffers and computation 

segments (double buffering approach for asynchronous programs). This limitation has been 

present in the emulation library but is resolved in the UNIMEM software and still needs to 

be tested. 

¶ Size limitation of the memory segment: 256mb. This size is much too small for real world 

applications, which typically use up to 16GB to 32GB per node, doing overlapped 

computations and communications. 

¶ Single communication channel: at least two communication channels are needed to 

implement overlapped communication: One to post current IO-operations on and another 

one to poll for previous posted IO-operations as described above. 

¶ Size limitation per IO-operation: 8mb-1byte: for large communication sizes this will 

produce a lot of overhead (several IO-operations). Stencil code algorithms might be able to 

run on such a system without any changes, however especially modern machine learning 

applications might need to use 32-64MB.  

¶ Single RDMA status request: it would be much more efficient to request the status of an 

array of communication-identifier at once. Single RDMA status requests produce a lot of 

context switches and other overhead. 

¶ The RDMA functionality should be implemented mostly in userspace and not in 

kernelspace. 

¶ Atomic operations in UNIMEM cannot use the same memory segments as RDMA IO-

operations.  Since most of the GPI based applications run atomics and RDMA operations 

out of the same memory segment, this limitation does not allow pre-compiled GPI-2 

binaries to run on top of UNIMEM. 

¶ Atomic operations on UNIMEM need some kind of relationship between affected 

processes. Access-tokens are distributed over a special startup mechanism which is not 

compatible with mpi_run or gpi_run. Here a startup procedure similar to mpi_run or gpi_run 

is needed to establish a working environment like on any other computing system today. 

¶ The remote UNIMEM prototype systems are not yet stable enough to do intensive tests. To 

get significant performance data for evaluation, a stable UNIMEM environment is needed.  

 

3.3.4 Requirements of MPI 

¶ MPI requires more than a single buffer allocation registered with the communication 

hardware to be able to provide a low-latency zero-copy approach. 

¶ MPI requires a  memory registration API to be able to register user-provided segments.  
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3.4 Suitable ExaNoDe Mini-apps 

All ExaNoDe mini-apps considered in D2.2 (Report on the ExaNoDe mini-applications) [18] 

are either implemented in MPI or they have MPI versions: Abinit, BQCD, HydroC, KKRnano, 

MiniFE and NEST. The four chosen applications (BQCD, HydroC, KKRnano and MiniFE) are 

therefore suitable for evaluation of the MPI port. Moreover, the MPI port will be developed in 

consultation with the application partners of ExaNeSt and will be made available to them for 

implementation and performance evaluation using production scientific applications, in 

particular those from INAF and INFN. 
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4 Power and thermal control 
Building on the definition of the thermal capping optimal policy, we focused on the realization 

of the power capping problem which ease the need of extracting the thermal model from the 

target architecture.  

 

Several approaches in the literature have proposed mechanisms to constrain the power 

consumption of large-scale computing infrastructures. These can be classified into two main 

families. Approaches in the first class use predictive models to estimate the power consumed 

by a job before its execution. At job scheduling time this information is used to allow into the 

system jobs that satisfy the total power consumption budget. Hardware power capping 

mechanism like RAPL (Running Average Power Limit)are used to ensure that the predicted 

budget is respected during all the application phases and to tolerate prediction errors in the jobôs 

average power consumption estimation [19] [20] [21]. Approaches in the second class distribute 

a slice of the total system power budget to each active computing element. The per-compute 

element power budget is ensured by mean of hardware power capping mechanism like RAPL. 

The allocation of the power consumption budget to each compute nodes can be done statically 

or dynamically [22] [23] [24]. It is goal of the run-time to trade off power reduction with 

application performance loss. GEOPM implement a plugin for power balancing to improve 

performance in power constraint systems reallocating power on sockets involved in the critical 

path of the application. 

Authors in [25] quantitatively evaluated RAPL as a control system in term of stability, accuracy, 

settling time, overshoot, and efficiency. They evaluate only the proprieties of RAPL mechanism 

without considering other power capping strategies and how can vary application workload. 

 

State-of-the-art mechanism relies on a hardware mechanism to directly control the power 

consumption. In the ExaNoDe architecture this feature is not present and as consequence we 

constrain the power consumption by directly controlling the frequency of the cores. In the 

following section, we focus on the comparison with state-of-the-art related work, which has 

been done on an Intel platform, in order to compare with Intel RAPL. 

 

4.1 HPC Architectures 

HPC systems are composed of tens to thousands computational nodes interconnected with a 

low-latency high-bandwidth network. Nodes are usually organized in sub-clusters allocated at 

execution time from the system scheduler according to the user request. Sub-clusters have a 

limited lifetime, after which resources are released to the system scheduler. Users request 

resources through a batch queue system, where they submit applications to be executed. Even 

a single node can be split in multiple resources shared among users. The single indivisible units 

in a HPC machine are CPU, memory and possibly accelerators (GPGPU, FPGA, Many-core 

accelerator, etc.). 

HPC applications typically use the Single Program Multiple Data (SPMD) execution model, 

where the same application executable is instanced multiple times on different nodes of the 

cluster; each instance works on a partition of the global workload and communicates with other 

instances to orchestrate subsequent computational steps. For this reason, a HPC application can 

be seen as the composition of several tasks executed in a distributed environment which 

exchanges messages among all the instances. Achieving high-performance communication on 

distributed applications in large clusters is not an easy task. The Message-Passing Interface 

(MPI) runtime responds to these demands by abstracting the level of network infrastructure 

using a simple but high-performance interface for communication that can scale up on 

thousands of nodes. 
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HPC machines are extreme energy consumers, and server rooms require a proportioned cooling 

system to avoid overheating situations. The extreme working conditions of this kind of 

machines brings a lot of inefficiencies in terms of energy and thermal control, that turn in 

computational performance degradation. Hardware power managers are becoming a 

fundamental to controlling power utilization using different strategies to reduce energy waste 

and, at the same time, assure a safe thermal environment. 

 

4.2 Power Management in HPC Systems 

Nowadays, operating systems can communicate with different hardware power managers 

through an open standard interface called Advanced Configuration and Power Interface (ACPI) 

[26]. In this work, we focus on ACPI implementation of Intel architecture, since most HPC 

machines (more than 86% in [27]) are based on Intel CPUs. Intel implements the ACPI 

specification defining different component states which a CPU can use to reduce power 

consumption. Today's CPU architectures are composed of multiple processing elements (PE) 

which communicate through a network subsystem that interconnect PEs, Last Level Cache 

(LLC), Integrated Memory Controllers (IMC) and other uncore components. Intel architecture 

optimizes ACPI using different power saving levels for cores and uncore components. The 

ACPI standard defines P-states to select DVFS operating points targeting the reduction of active 

power, while defines C-States the idle power levels. In our work, we consider only P-states to 

manage DVFS control knob, this because HPC applications do not manifest idle time during 

the execution. 

 

Intel P-States show in Figure 13, defining a number of levels which are numbered from ñ0ò to 

ñnò where ñnò is the lowest frequency and ñ0ò is the highest frequency with the possibility to 

take advantage of Turbo Boost technology. Turbo Boost is an Intel technology that enables 

processors to increase their frequency beyond the nominal via dynamic control of clock rate. 

The maximum turbo frequency is limited by the power consumption, thermal limits and the 

number of cores that are currently using turbo frequency. Since Haswell, Intel cores allow 

independent per-core P-State. 

 

Figure 13: DVFS mechanism 

 

Intel Power Management Driver: Intel P-States are managed by a power governor 

implemented as a Linux kernel driver. By default, on Linux system, Intel architectures are 

managed by a kernel module called ñintel_pstateò. This driver implements a Proportionalï

IntegralïDerivative (PID) feedback controller. The PID controller calculates an error value 

every 10 ms as the difference between a desired setpoint and the measured CPU load in that 

period. The PID controller acts to compensate this error by adapting the P-State value. 

The PID internal parameters are defined with default values by the Intel driver but can be 

customized by the system administrator. 
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Inside ñintel_pstateò driver only two governors are implemented: ñpowersaveò (default) and 

ñperformanceò. We will not describe in detail the operations of these governors because it is 

outside the scope of this work, but from a practical point of view, ñperformanceò always 

maintains the CPU at maximum frequency while ñpowersaveò can choose a different level 

depending of the machine workload. Hence, ñpowersaveò tries to achieve better energy 

efficiency while ñperformanceò tries to achieve the best performance at the expense of higher 

energy consumption. 

 

Linux Power Management Driver: The ñintel_pstateò driver does not support a governor that 

allows users to select per-core fixed frequency. Differently, the default power management 

driver of Linux ñacpi-cpufreqò does it. 

ñacpi-cpufreqò is similar to Intel driver but implement a large set of governors which implement 

different algorithms. The available governors are: 

1. Powersave; this governor differently from Intel driver, runs the CPU always at the 

minimum frequency. 

2. Performance: runs the CPU always at the maximum frequency. 

3. Userspace: runs the CPU at user specified frequencies. 

4. Ondemand: scales the frequency dynamically according to current load. It is equivalent 

to the ñpowersaveò governor of Intel driver [28]. 

5. Conservative: similar to ondemand but scales the frequency more gradually. 

In our work, we use ñuserspaceò governor to select fixed frequencies for all the duration of our 

benchmarks.  

 

4.3 Hardware Power Controller 

 

 

Figure 14: RAPL power domain 

 

Today's CPU architectures implement reactive hardware controller to maintain the processor 

always under an assigned power budget. The hardware controller tries to maximize the overall 

performance while constraining the power consumption and maintaining a safe silicon 

temperature. Intel architectures implement in its CPU a hardware power controller RAPL 
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depicted in Figure 14. RAPL is a control system, which receives as input a power limit and a 

time window. As consequent, RAPL continuously tunes the P-states to ensure that the limit is 

respected in the specified time window. RAPL can scale down and up core's frequencies when 

the power constraint is not respected overriding the selected P-states. RAPL power budget and 

time window can be configured writing a Machine Specific Register (MSR) on the CPU. 

Maximum and minimal values for both power budget and time window are specified in a read-

only architectural register. Values for both power and time used in RAPL are represented as 

multiple of a reference unit contained in a specific architectural register. At the machine start-

up, RAPL is configured using thermal design power (TDP) as power budget with a 10ms time 

window. RAPL also provides 32bit performance counters for each power domain to monitor 

the energy consumption and the total throttled time. RAPL implements four power domains 

which can be independently configured: 

1. Package Domain: this power domain limits the power consumption for the entire 

package of the CPU, this includes cores and uncore components. 

2. DRAM Domain : this power domain is used to power cap the DRAM memory. It is 

available only for server architectures. 

3. PP0/Core Domain: is used to restrict the power limit only to the cores of the CPU. 

4. PP1/Graphic Domain: is used to power limit only the graphic component of the CPU. 

It is available only for client architectures due Intel server architectures do not 

implement graphic component into the package. 

In the experimental result section, we focus our exploration on the package domain of RAPL 

controller because core and graphic domains are not available on our Intel architecture. 

DRAM domain is left for future exploration works. We also tried to modify the time windows 

of package domain (which can be set in a range of 1ms to 46ms in our target system) to see its 

impact on application performance. 

Our results show that this parameter does not lead to noticeable changes in the results obtained. 

For this reason, we report results only for the default 10ms time window configuration. 

4.4 Architecture Target 

In this work, we take as architecture target a high-performance computing infrastructure, which 

is a Tier-1 HPC system based on an IBM NeXtScale cluster. Each node of the system is 

equipped with 2 Intel Haswell E5-2630 v3 CPUs, with 8 cores with 2.4 GHz nominal clock 

speed and 85W Thermal Design Power (TDP, [29]). We selected this target system as it 

contains all the power management features (RAPL, per core DVFS, c-states) of future HPC 

computing nodes and can be used as a reference for future ARM systems. 

Quantum ESPRESSO (QE) [30] is an integrated suite of computer codes for electronic-structure 

calculations and materials modelling at the nanoscale. It is an open source package for research 

in molecule dynamics simulations and it is freely available to researchers around the world 

under the terms of the GNU General Public License. Quantum ESPRESSO is commonly used 

in high-end supercomputers. QE main computational kernels include dense parallel Linear 

Algebra (LA) and 3D parallel Fast Fourier Transform (FFT). Moreover, most of application 

workload is based on LA and FFT mathematical kernels which makes our exploration work 

relevant for many HPC codes. In our tests, we use a CarïParrinello (CP) simulation, which 

prepares an initial configuration of a thermally disordered crystal of chemical element by 

randomly displacing the atoms from their ideal crystalline positions. This simulation consists 

of a number of tests that must be executed in the correct order. 

4.5 Monitoring Runtime 

We developed a monitor runtime to extract system information synchronously with the 

application flow. The runtime is a simple wrapper of the MPI library where every MPI function 

of each process has been enclosed by an epilogue and a prologue function. We used the MPI 
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standard profiling interface (PMPI), which allow us to intercept all the MPI library functions 

without modify the application source code. The runtime is integrated in the application at 

linked time. Hence, this Runtime can extract information distinguishing application and MPI 

phases as shows in Figure 15. The monitor runtime uses low-level instructions to access the 

Performance Monitoring Unit (PMU) with low overhead. We programmed per-core PMU 

registers to monitor frequency, CPI, and scalar/vector instructions retired. The monitor runtime 

can intercept a very high number of MPI calls of the application.  

 

Figure 15: Monitor runtime  

 

 

4.6 Methodology 

We run QEïCP with a configuration of 16 MPI processes with a one-to-one bind to each core 

of our HPC node. We start by comparing different configurations of power capping in our test 

environment. Initially, we split the power budget in an equal manner on both sockets, we set a 

power consumption limit of 48 W on each socket, for a global power envelope of 96 W. This 

test shows that the core's frequencies on different sockets are heterogeneous, suggesting that 

the two sockets have different inherent power efficiency. To have the same frequency among 

all the cores, the tested computing node needs of 11.3% higher power on socket 0. As a 

consequence of this result, we run a set of benchmarks fixing the same frequency for all the 

cores while monitoring the power consumption of each socket. We use this per-socket power 

budget as power constraint to obtain the same frequency among all the cores. We execute again 

the tests using RAPL to impose these per-socket power caps and leave RAPL decides the actual 

frequency. 

 

 

Table 2: Quantum ESPRESSO - Power Capping 
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Table 1 shows the results of our set of experiments using different levels of power caps. 

In the first column, there are reported the target frequencies used to extract the power limits 

specified in the second column. Second and third columns show the sum of power consumption 

of both sockets using DVFS and RAPL mechanisms for power capping. We can see that the 

power consumption is the same, so the power cap is respected and the tests are comparable. In 

the frequency columns are reported the average frequencies for the entire application and 

among all the cores. These columns show that RAPL has an average frequency of 11.1% higher 

than DVFS but, if we look at the execution time (reported in next columns), DVFS has a lower 

execution time, in average 2.9% faster than RAPL. 

In the next sections, we will explore why DVFS power cap has a lower execution time respect 

to RAPL which, in contrast, has a higher average frequency. 

4.7 System Analysis 

Figure 16 shows a time window of the system-aware monitoring tool for both the power capping 

mechanisms while QEïCP iterates on the same computational kernel. The test reports the case 

of a power constraint relative to 1.5 GHz for DVFS and RAPL power cappers. So, the results 

are comparable directly. 

 

 

Figure 16: Comparison of DVFS and RAPL (Time window of 50 seconds) 

 

First, we can check the correct behaviors of power capping logic by looking at the core's 

frequencies and package power consumption (first two top plots). In the DVFS plot on the left 

part of Figure 16, core's frequencies are fixed at 1.5 GHz while package power consumption 

floats around the average value as effect of the different application phases. In contrast, RAPL 

(on the right) maintains constant the power consumption for both the sockets while core's 

frequencies changes following the current application phase. Table 1 reports a similar average 

power consumption for both the two cases, thus the power cappers are working as expected. 

Both benchmarks show a lower CPI when the memory bandwidth is low and SIMD instructions 

retired are high. In these phases, RAPL has lower frequency than the DVFS case as effect of 

the higher power demand of SIMD instructions. On the other hand, RAPL assigns higher 

frequencies than DVFS when CPI is high and this happens when the application is moving data 

from/to memory as proved by the high memory traffic/bandwidth reported by the "Mem Ch 

[GB/s]ò plot. In these phases, the number of SIMD instructions retired are lower and, as already 

pointed out and shown in the RAPL plot, the core's frequencies selected by RAPL increases 

above average due the higher power budget. However, increasing core's frequencies when the 

application is memory bound does not reflect in a consequent performance gain due the higher 

CPI and sub-linear dependency of application speed-up with frequency in these phases. 
















