© Forschungszentrum Jilich

[3'%INoDe

D2.3

Report and best practices on porting of the
mini-applications to the ExaNoDe architecture

Workpackage: |2

Co-Design for Exa-scale HPC systems

Author(s): Aditya Kela JUELICH

Dirk Pleiter JUELICH
Authorized by | Petar Radojkovic BSC
Reviewer Paul Carpenter BSC
Reviewer Emre Ozer ARM
Reviewer Antoniu Pop UOM
Dissemination i

Public
Level
Date Author Comments Version | Status
2018-03-20 Dirk Pleiter Initial draft V0.0 Draft
2018-03-26 Aditya Kela Updated draft V0.1 Draft
2018-04-03 Aditya Kela Updated draft V0.2 Draft
2018-04-05 Dirk Pleiter Consolidated draft V0.3 Draft
2018-04-06 Dirk Pleiter Final version V1.0 Final
2018-04-14 Dirk Pleiter Final version based on internal V1.1 Final

reviewers comments

Project No. 671578

ExaNoDe Deliverable D2.3

Page i

© Forschungszentrum Jilich

Executive Summary

The ExaNoDe project adopted the mini-application approach for managing the challenge of
porting real-life applications to a new architecture for performance evaluation purposes. Mini-
applications are simplified versions of the full applications, where the relevant performance
features of the application are maintained, but the total number of lines-of-code is
significantly reduced.

With this deliverable we provide the implementation of the four mini-applications, which are
based on the four applications selected in Deliverable D2.1, as well as a report about the
implementation and porting of the mini-applications. Furthermore, initial performance
numbers have been created on an ExaNoDe prototype system based on Trenz boards.

The following four mini-apps have been implemented and ported:

e BQCD: A massively-parallel application for simulating Quantum Chromodynamics,
which is the theory for strong interactions.

e HydroC: An application-based benchmark mimicking a 2-dimensional CFD code
based on the Finite Volume Method

e KKRnano: A highly scalable material science application based on the Density
Functional Theory (DFT) method.

e MiniFE: A mini-application implementing an Implicit Finite Elements method in 3
dimensions.

Project No. 671578 ExaNoDe Deliverable D2.3 Page ii

© Forschungszentrum Jilich

Table of Contents

R 11 (T (1 o4 A o] o SRS PRTRRRR 1
2 JUBE benchmarking frameWorkcoouoiiiiiiiie e 1
3 MINI-PPHCALIONS. ... bbb 2
3l BOQOCD it b bbb e es 2
3.2 HYAIOC ..o 3
3.3 KKRNANO ...t 3
I 111 0T SRR 3
4 PerfOrmanCe RESUITScciiiiieieie ettt 4
O = T 11 I SRS SSRR 5
N = 1Yo | (OSSPSR 8
4.3 KIKRNANO ...ttt b et e e et e bt e et e nen e e 11
A4 MINIFE (oo bbb 14
4.5 Throughput Of iNStrUCtION ANAIYSIScouveiiiiiieieese e 17
4.6 Memory bandwidth analySiS...........cceiieiiiiiciicce e 18
5 Summary and Concluding REMAIKS..........cccoeiiiiiiiiiree e 20
B RETEIEICES ...ttt bbb 21

Project No. 671578 ExaNoDe Deliverable D2.3 Page iii

© Forschungszentrum Jilich

Table of Figures

Figure 1: Total number of instruction for BQCD.........cccooiiiiiiiiiiieieeee e 5
Figure 2: Total number of cycles for BQCDc.coiiiiiieie e 6
Figure 3: Number of L1 data cache misses for BQCDcccooiiiiriiieienc e, 6
Figure 4: Number of L2 data cache misses for BQCDccccooveveiiiiieie e 6
Figure 5: BQCD Profile.. ..o 7
Figure 6: Total number of instructions for HydroC ... 8
Figure 7: Total number of cycles for HydroC ..o 8
Figure 8: Number of L1 data cache misses for HydroC.............cccocvvievieiiiie i 9
Figure 9: Number of L2 data cache misses for HydroC............ccocoiiiiiiiciiieeeee, 9
Figure 10: HYdroC profile........ccvoeeiiiie e 10
Figure 11: Total number of instructions for KKRNANOcccoiiiiiiiiiiiiecee 11
Figure 12: Total number of clock cycles for KKRNANO...........cccccvveiiiiiiieicccceece e 11
Figure 13: Number of L1 data cache misses for KKRNANOccccevviiiniiininininieee 12
Figure 14: Number of L2 data cache misses for KKRNANOcccccovevieviiiccecce e 12
Figure 15: KKRNANO Profile.......coiiiiic e 13
Figure 16: Total number of instructions for MINIFEcccoeiiiiiiiic i 14
Figure 17: Total number of cycles for MINIFE...........ccoooooiiiiiiii e 14
Figure 18: Number of L1 data cache misses for MiniFEc.cccovvvviiieviiic i 15
Figure 19: Number of L2 data cache misses for MiniFEc.ccooviiiniiinnineceee 15
Figure 20: MINIFE Profile.........oiioe e 16
Figure 21: IPC fOr BQCD ..ottt 17
Figure 22: IPC fOr HYAIOCottt 17
Figure 23: IPC fOr KKRNANOooiiiiiiiiiiesieseee s 18
Figure 24: IPC fOr MINIFE.........ccooi e 18
Figure 25: Total number of instructions for SAXPY ..o 19
Figure 26: Total number of cycles for SAXPYcovii i 19
Figure 27: Number of L1 data cache misses for SAXPY ..o 20
Figure 28: Number of L2 data cache misses for SAXPY ..o 20

Project No. 671578 ExaNoDe Deliverable D2.3 Page iv

© Forschungszentrum Jilich

Table of Tables

Table 1: Comparison of the CPUs used for the JURECA supercomputer and the Trenz-based
(O 0] 1018/ o =TSSR

Project No. 671578 ExaNoDe Deliverable D2.3 Page v

© Forschungszentrum Jilich

1 Introduction

A mini-application [Heroux2009] is a reduced but self-contained application extracted from a
real large-scale application with the objective of rapidly exploring the parameter space of the
real application by quickly traversing parameter choices for hardware platforms, runtime and
compile-time environments. Mini-applications can be thought of as occupying a middle
ground between benchmark suites like LINPACK (HPL) [Dongarra1999] and full-scale
applications, which are better suited for testing near-production systems. [Heroux2009]
provides a list of categories that a mini-application aids with:

e Interaction with external research communities via an open-source requirement for the
mini-application.

e Simulator for the study of processor, memory and network architectures

e Early node architecture studies

e Network scaling studies

e Study of new languages and programming models

e Compiler tuning

A mini-application is not just a stripped down version of the large-scale application but is a
good representation of the parameter space traversed by the large-scale application. Our
efforts to develop these mini-applications have started with the original application and have
been to cut out code that was not necessary for the required parameter space performance
analysis.

In this deliverable we report on the mini-applications based on the applications selected in
deliverable D2.1. This report is organised as follows: We start by describing the
benchmarking environment in Section 2. In Section 3 the different mini-applications are
described in more detail and references to the corresponding git repositories are provided.
Next we present in Section 4 performance results obtained on a single node of the Trenz-
based prototype as well as a state-of-the-art supercomputer. Finally, concluding remarks are
provided in Section 5.

2 JUBE benchmarking framework

The JUBE benchmarking environment [JUBE] helps performing and analyzing benchmarks
in a systematic way. It provides a script-based automated framework to easily create
benchmark sets by:

e Choosing platforms

e Configuring for the chosen platform
e Compiling

e Running a benchmark suite

e Data pre- and post-processing

e Storage

In addition, different benchmarks with different parameters are created automatically. For
example, if parameter A takes values in {al, a2} and parameter B takes values in {b1, b2},
benchmarking can be done for the combination: {(al, bl), (al, b2), (a2, bl), (a2, b2)}.

Each mini-application is a combination of the source code plus a JUBE folder containing:
e template makefiles

Project No. 671578 ExaNoDe Deliverable D2.3 Page 1

© Forschungszentrum Jilich

e template inputfiles
e specs-<mini-app>.xml
e <mini-app>.xml

specs-<mini-app>.xml: This file contains the parameters that get substituted in the template
input-files and the template make files.

<mini-app>.xml: This file substitutes the parameter values from the spec-<mini-app>.xml file
to the template files and combines the source with these substituted files into a subfolder
inside the JUBE directory. As a second step, it runs the code. It analyses the results as the
third step.

3 Mini-applications
In this section, we describe each of the four mini-applications:
1. BQCD
2. HydroC
3. KKRnano
4. MiniFE

Also, their contents are compared to their corresponding overall large-scale application. We
also detail the efforts made to port the applications to the ARMv8 architecture. A link to each
of the repository is provided.

3.1 BQCD

BQCD (Berlin Quantum ChromoDynamics program) is a hybrid Monte-Carlo code that
simulates Quantum Chromodynamics on a lattice (LQCD) with dynamical Wilson-type
fermions [Nakamura2010]. It is written in Fortran 90 and uses MPI and OpenMP for
parallelisation. A relatively simple kernel, where mainly sparse matrix-vector multiplications
are performed, dominates overall performance. The application is part of the UEABS
[UEABS] and one of the PRACE-3IP benchmark applications. It is currently used for large-
scale projects on different Tier-1 systems. LQCD is on multiple future research roadmaps and
is an application area that is in need for exascale computing resources [Brower2017].

The BQCD mini-app is the complete stand-alone complex arithmetic conjugate-gradient
method stripped down from the original complex arithmetic Hybrid Monte-Carlo method
from the BQCD code. The mini-application includes a SIMD version of the conjugate
gradient method for the ARMvV8 architecture making use of the ARM NEON compiler
intrinsics. It is important to note that the multiplication of two Fortran complex numbers is not
done in SIMD. In order to implement SIMD vectorization, the structure of the complex arrays
was changed from the standard sequence of alternating real and imaginary parts of each
complex number to a layout that involved a collection of real numbers with the length of the
collection corresponding to the SIMD width followed by the corresponding imaginary
numbers (also with a length of the SIMD width) with such a continuing alternation.

In the mini-application, a C pre-processor was employed for conditional compilation and for
macro processing. All the BQCD source files have the .F90 suffix and the suffix for the pre-
processed file is .f90. The .f90 files will be the files that are compiled. This extra step was
chosen to check the result of the pre-processing. Macro names are almost always upper-case
(mixed case sometimes). The Fortran code is lower-case. The mini-application can be
compiled either for single precision or for double precision arithmetic.

Repository: https://gitlab.version.fz-juelich.de/exanode/miniapp-bgcd.qit

Project No. 671578 ExaNoDe Deliverable D2.3 Page 2

https://gitlab.version.fz-juelich.de/exanode/miniapp-bqcd.git
https://gitlab.version.fz-juelich.de/exanode/miniapp-bqcd.git

© Forschungszentrum Jilich

3.2 HydroC

HydroC" is already a mini-application, being a simplified version of the astrophysical code
RAMSES. It is considered here as it represents a large class of relevant codes. It is a 2-
dimensional CFD using the Finite Volume Method with a Godunov’s scheme and a Riemann
solver at each interface on a regular 2D mesh. The code basis is O(1,000) lines of code and
thus small. Another aspect that is interesting in this context is the support of accelerators
through an OpenCL version of the code [Lavallee2012].

The HydroC mini-application is the HydroC99_2DMpi benchmark which is a fine grain
OpenMP + MPI version of the CFD that uses C99. It does not include the OpenACC, CUDA
and the OpenCL methods of the CFD. This C99 version does a domain decomposition via
MPI and then proceeds with a 2D sweep of the domain. A k-D tree was used for the domain
decomposion as the code can then use the power of 2 processors while the 2D sweep
algorithm makes use of the alterate directions scheme.

OpenMP was used to parallelize the Godunov and the Riemann routines. The Riemann

routine is called from within the Godunov routine. Therefore, to parallelize the kernel, a
parallel region at the main level in the temporal loop was constructed and the work was
shared among threads at the Godunov level.

Repository: https://qgitlab.version.fz-juelich.de/exanode/miniapp-hydroc.qit

3.3 KKRnano

KKRnano is based on the Density Functional Theory (DFT) method, which is a very popular
method in condensed matter physics and material science [Thiess2012]. It is written in
Fortran 90 and uses MPI and OpenMP for parallelisation. The overall performance is
dominated by dense matrix and other linear algebra tasks. The application is optimized for
scaling to a very large number of atoms and thus for execution on massively-parallel HPC
systems. It is, e.g., member of Jiilich's High-Q Club?, which is a list of applications that could
demonstrate scalability using 28 racks of Blue Gene/Q, i.e. 458,752 cores. Material science is
an area that will in future be in need of exascale computing resources.

The KKRnano mini-application represents the core operation of the Density Functional
Theory application KKRnano. The core problem of the Green function based DFT calculation
is the iterative matrix inversion of a block sparse and short ranged matrix instead of direct
inversion solutions. This implies the main calculation in the mini-application is a block-sparse
times block-sparse matrix-matrix multiplication. The blocks have double precision complex
entries. Block sizes are chosen to be a size of 16x16 when the angular momentum expansion
LMAX takes the value of 3 (where s, p, d and f electrons are considered). The block size of
32x32 is chosen with a non-collinear spin treatment. Each block-times-block multiplication is
therefore, a task of 32 or 256 kiFlop respectively. The tight-binding KKR leads to a low
scattering interaction between nearest neighbour cells.

Repository: https://gitlab.version.fz-juelich.de/exanode/miniapp-minikkr.qgit

3.4 miniFE

MiniFE? is already a mini-application, which is widely used for co-design projects in the
USA, e.g. in the context of the Trinity system at NERSC or the CORAL systems at ORNL,
LLNL and ANL. MiniFE mimics the finite element generation, assembly and solution for an

! https://github.com/HydroBench/Hydro/tree/master/HydroC
2 http://www.fz-juelich.de/ias/ijsc/EN/Expertise/High-Q-Club/ node.html
% https://mantevo.org/packages/

Project No. 671578 ExaNoDe Deliverable D2.3 Page 3

https://gitlab.version.fz-juelich.de/exanode/miniapp-hydroc.git
https://gitlab.version.fz-juelich.de/exanode/miniapp-hydroc.git
https://gitlab.version.fz-juelich.de/exanode/miniapp-minikkr.git
https://gitlab.version.fz-juelich.de/exanode/miniapp-minikkr.git
https://github.com/HydroBench/Hydro/tree/master/HydroC
http://www.fz-juelich.de/ias/jsc/EN/Expertise/High-Q-Club/_node.html
https://mantevo.org/packages/

© Forschungszentrum Jilich

unstructured grid problem. The calculations are performed using a 3-dimensional box of
configurable size. While the discretisation is structure, MiniFE treats it as an unstructured
grid. The numerical problem is linear and the resulting matrix is symmetric. Therefore
conjugate gradient can be applied, which is a popular algorithm for solving sparse linear
systems.

The MiniFE mini-application contains several kernels for computing the diffusion matrix and
the source vector element-operators, constructing the scattering element-operators into a
sparse matrix and vector form, performing a sparse matrix-vector product during the
conjugate gradient solve and the axpy, dot, and norm blas vector operations.

MiniFE provides support for computation on multiple cores, including pthreads and Intel
Threading Building Blocks, and also a CUDA version for GPU. The OpenMP version was
chosen for the mini-application.

Repository: https://gitlab.version.fz-juelich.de/exanode/miniapp-minife.qgit

4 Performance Results

In this section, we present performance comparisons of each of the mini-applications between
experiments done on the Trenz-based prototype and the JURECA supercomputer at the
Juelich Forschungszentrum.

The Trenz-based prototype maintained by FORTH consists of 4 nodes, each of which is a
TEBFOB808 Trenz board which is equipped with a Trenz TE0O808 UltraSOM+ module. The
module is equipped with a Xilinx ZYNQ UltraScale+ ZU9EG FPGA. This FPGA integrates 4
ARM Cortex-A53 cores plus 2 ARM Cortex-R5 cores. The latter have not been used here.

For the experiments, we have restricted ourselves to a single Trenz node.

In addition, we have made use of UnimemMPI, a library that provides an implementation of
the MPI standard that was developed within the scope of the ExaNeST project, which was
made available earlier than the optimized MPICH implementation under development in the
ExaNoDe project.

The JURECA supercomputer consists of the following:

e 1872 cluster nodes, each with 2x Xeon E5-2680v3 CPUs, out of which 75 nodes are
additionally equipped with 2x NVIDIA K80 GPUs

e 1640 booster nodes, each with 1x Xeon Phi 7250-F
For the experiments, we restrict ourselves to a single cluster node.

Table 1: Comparison of the CPUs used for the JURECA supercomputer and the Trenz-based prototype

JURECA cluster node Trenz TE0808
UltraSOM+
Number of sockets 2 1
Number of cores per socket 12 4
Core clock speed (base) 2.5 GHz 1.5 GHz
L1 instruction cache 32 kiByte 32 kiByte
L1 data cache 32 kiByte 32 kiByte

Project No. 671578 ExaNoDe Deliverable D2.3 Page 4

https://gitlab.version.fz-juelich.de/exanode/miniapp-minife.git
https://gitlab.version.fz-juelich.de/exanode/miniapp-minife.git

© Forschungszentrum Jilich

L2 cache 256 kiByte (private) 1 MiByte (shared)
L3 cache 30 MiByte (shared) -

In the following sub-sections we perform a comparison between the JURECA processor and
the processor used in the Trenz board. For used PAPI to measure the following performance
counters:

e PAPI_TOT_INS: total number of instructions

e PAPI_TOT_CYC: total number of clock cycles

e PAPI_L1 DCM: number of L1 data cache misses
e PAPI_L2 DCM: number of L2 data cache misses

The data is collected for runs using 1, 2, 3 and 4 OpenMP threads distributed over different
cores. Additionally a profiling overview using callgrind was produced on the Trenz boards
using a single thread.

4.1 BQCD

The input parameters for the experiments include a lattice of size 8x8x8x8, with periodic
boundary conditions for the fermionic fields in the X, y, z direction, Wilson gauge action and a
Clover fermi action. The lattice size was chosen to be small as in real life larger lattices would
be distributed over a larger number of nodes. The full input deck is specified in the “specs-
bgcd.xml” file in the JUBE folder of the mini-application.

The non-SIMD version of the mini-application was used for these experiments.
The results are shown in Figure 1 to Figure 5 where we observe the following:
e The number of instructions on both platforms is similar.

o Significant differences are observed for the total number of clock cycles. This is
expected as BQCD is a memory-bandwidth limited application and the JURECA node
provides a significantly larger memory bandwidth (see also Section 4.6).

e The number of cache misses on both platforms differs by up to 10%. As the problem
exceeds the size of the L1 and L2 cache on both architectures, this observation is
consistent with expectations.

PAPI TOT_INS

E
0 I
1 2 3 4

CORES

lef

B Trenz W JURECA

Figure 1: Total number of instruction for BQCD

Project No. 671578 ExaNoDe Deliverable D2.3 Page 5

Lef

le7

lef

Project No. 671578

1

e

%]

[y

0

© Forschungszentrum Jilich

PAPI TOT_CYC

1 2 3

CORES

M Trenz M JURECA

Figure 2: Total number of cycles for BQCD

PAPI L1 DCM

1 2 3 4

CORES

H Trenz ®mJURECA

Figure 3: Number of L1 data cache misses for BQCD

PAPI L2 DCM

2 3 4

CORES

H Trenz ®mJURECA

Figure 4: Number of L2 data cache misses for BQCD

ExaNoDe Deliverable D2.3

Page 6

© Forschungszentrum Jilich

[callgrind.out.1986 [../cgbgcd bgcd.200.input bgcd.200.output] -+ X
File View Go Settings Help

PIOpen { Back » > fowad - AUp v % Relative) CycleDetection +}»RelativetoParent <> Shorten Templates Instruction Fetch :]

Flat Profile @E MaIN_
Search: (NoGrouping) : Types Callers AllCallers Callee Map | Source Code
Incl. Self Called Function Location
B 66.15 0.05 4482 M <cycle 1> Id-2.24.50
- 6599 0.00 6 M start_thread <cycle 1> libpthread-2.24.s0: pthread_create.c
- 6599 0.05 3 ® 0x0000000000016¢cO libgomp.50.1.0.0
B 3400 0.00 (0) ® 0x0000000000000c20 |d-2.24.50
® 3397 0.0 18 _start cgbqed
® 3397 0.00 1 ® (below main) libc-2.24.50: libe-start.c
® 3397 0.00 1 ® main cgbqed
3397 0.0 1 MAIN cgbged
® 3386 0.00 1 M cg_solver_ cgbqed

2246 0.00 38112 M 0x0000000000116318 (unknown)
2246 003 38112 B GOMP_parallel libgomp.50.1.0.0
2221 0.00 100 M solve_ cgbqed
2116 0.00 100 ® solve_eo_ cgbqed
2020 0.00 100 M solve_mtil_ cgbqed
19.34 0.00 100 ® cg_outer_ cgbqed
1930 0,00 100 W cg_ cgbqed
. 0.00 1100 & wdagw_ cgbged
16.85 ¢ 16.85 152 451 W 0x0000000000019660 libgomp.s0.1.0.0
14.29 1 14.28 19 600 clover_mult_ao_._omp_... cgbqed
13.98 1 13.98 152 448 ® 0x00000000000198a0 libgomp.s0.1.0.0
11.54 0.00 100 ® make_source_ cgbqed
11.54 0,00 200 W ran_gauss_volh_ cgbqed
1066 0.02 200 o ran_field_ cgbqed
10.621 10.62 3200 o ranixd cgbqed
1017 0.01 1200 M mtil_dag_ cgbqed
885 000 1100 ® mtil_ cgbqed
755 002 2600md_ cgbqed

Ir Ir per call Count Callee

#3386 1163419108
0.03 1032678
0.03 935636
0.02 702 297

M cg_solver_(cgbqcd)

o init_common_ (cgbqcd)

8 comm_init_ (cgbqcd)

_module_input_MOD_input_read (cgbqcd)

B L L L L
@
19
)

719 002 2400 M d_dag_ cgbqed g&‘) 399 673 : init_confs2_(cgbqed)
479 000 4900 o clover_mult_ao_ cgbqed ey ‘;: ;9 init_modules_(cgbqcd)
446 035 38112 M 0x0000000000017010 libgomp.s0.1.0.0 e poicn: M init_ran_(cgbqed)

402 401 10400 o d_yf_._omp_fn.1 cgbqed - M init_para_(cgbqcd)
401 400 10400 W d_zf_._omp_fn.2 cgbqed

372 371 10400 M d_xf_._omp_fn.0 cgbqed 0.00 58437 M init_cooling_(cgbqcd)

0.00 47 399 M init_counter_ (cgbqcd)

371 370 9600 W d_dag_yf_._omp_fn.6 cgbqced

1
1
1
1
1
1
1
1
0.00 75931 1 8 comm_finalize_ (cgbgcd)
1
1
1
1
1
1
1

370 3.69 9600 o d_dag_zf_._omp_fn.7 cgbqced 0.00 35585 # init_bc_ (cgbged)

3.67 3.66 10400 ® d_t_._omp_fn.3 cgbqcd 0.00 29112 8 _module_cg_MOD_init_cg_para (cgbqcd)
363 0.08 38112 M GOMP_parallel_end libgomp.50.1.0.0 0.00 22836 # get _flags_(cgbqcd)

343 343 9600 md_dag xf_._omp_fnS cgbqed 0.00 15057 8 init_xbound_ (cgbqcd)

335 335 9600 M d_dag_t_._omp_fn8 cgbqed 0.00 15057 M init_xbound_rd_ (cgbqcd)

327 018 800 M ran_field_gauss_volh_._... cgbqed 0.00 13977 1 ® begin_(cgbqcd)

316 3.16 10400 M d_projection_._omp_fn.2 cgbged 0.00 1679 1 M check_fmt_(cgbqcd)

292 291 9600 ® d_dag_projection_._om... cgbqcd gx :::? : : :;‘Jaitaé;ig‘)l“ﬂ

243 0,00 2500 ® clover_inv_mult_ cgbqed ey = T R

236 0.00 2400 ® clover_dag_inv_mult_ cgbqed

1.82 0.01 307 200 & 0x0000000000116040 (unknown) PAIS| Callees ['Call Graph [Al Caliees'] Caller Map | Machinie Code

Figure 5: BQCD profile

Project No. 671578 ExaNoDe Deliverable D2.3 Page 7

© Forschungszentrum Jilich

4.2 HydroC

The input parameters for the experiments include a domain size of 500x500 which had a
reflective boundary in the right, left, up and down direction. The courant factor used was 0.8
and the nxy_step parameter was chosen to be 500. Moreover, a single run included 100
iterations. The complete input deck is specified in the “specs-hydro.xml” file in the JUBE
folder of the mini-application.

The results are shown in Figure 6 to Figure 9. We make the following observations:

e The number of instructions executed per core on both platforms is similar. However,
on Trenz only a relatively mild dependence on the number of cores is observed, which
Is unexpected and requires further investigation.

e Similar as in case of BQCD (see Figure 2), using the same number of cores, the total
number of cycles is about twice larger on the Trenz board compared to the JURECA
node.

e While the number of L1 cache misses is similar on both platforms, a significantly
smaller number of L2 cache misses is observed for the JURECA processing cores.

PAPI TOT_INS

m II II I
0 I I.
1 2 3 4

CORES

lef

(2]

B Trenz M JURECA

Figure 6: Total number of instructions for HydroC

PAPI TOT CYC

30
20
15
10
5 .
0
1 2 3

4

led
=]
wn

CORES

B Trenz M JURECA

Figure 7: Total number of cycles for HydroC

Project No. 671578 ExaNoDe Deliverable D2.3 Page 8

© Forschungszentrum Jilich

PAPI L1 DCM

lef

(]

0 II lI ..
2 3 4

CORES
M Trenz ™ JURECA e

PAPI L2 DCM

30
20
. . [| [
1 2 3 4

CORES

le?

B Trenz M JURECA

Figure 8: Number of L2 data cache misses for HydroC

Project No. 671578 ExaNoDe Deliverable D2.3 Page 9

File view Go Settings Help

© Forschungszentrum Jilich

Blopen < Back - b Foward - AUp v | % Relative| *) Cycle Detection +}+Relative toParent <> Shorten Templates Instruction Fetch - |

Flat Profile B ® maln

Search: | | (Mo Grouping) - Types cCallers AllCallers Callee Map | Source Code
el self called Function Location [

7486 001 1961 W <cycle 1> 1d-2.24.50

W 74.85 0.00
W 74.85 0.00
W 4718 W 4041

3 M start_thread =cycle 1>
3 | 0x0000000000016ccD
800 M riemann._omp_fn.0

B 25471 2054 800 # slope._omp_fn.0

B 2515 0.00 (0) = Ox0000000000000c20
B 2514 0.00 1 W _start

B 2514 0.00 1 M (below main)

L] 1979 B 0x0000000000109448
¥ 24.94 0.00 1979 W GOMP_parallel
¥ 2456 0.00 100 o hydro_godunov
I 12941 1294 800 M trace._omp_fn.0
1 11.80 0.00 200 o riemann
6.37 0.00 200 M slope

6.15 1.02 501 000 000 = 0x00000000001 09440
5.54 0,92 451 700 000 ® 0x00000000001093d8
512 5.12 501 000 000 ® fmax
4.62 4.62 451 700 000 o fmin

3.24 0.00 200 M trace

2.89 2.89 800 m cmpfix._omp_fn.0

2.45 2.45 1000 M equation_of_state._om...
217 217 800 o constoprim._omp_fn.0
1.73 1.73 800 m gleftright._omp_fn.0
1.38 1.38 400 o updateConservativevar...
1.06 1.06 400 o updateConservativevar...
0.73 0.00 200 W cmpfix

0.62 0.62 400 W gatherConservativeVar...
0.62 0.62 400 ® gatherConservativeVar...
0.62 0.00 250 M equation_of_state

0.61 0.00 200 ® updateConservativeVars
0.59 0.59 200 o ComputeQEforRow._o...
0.54 0.00 200 W constoprim

0.44 0.00 200 ® gleftright

0.35 0.00 50 o compute_deltat

0.31 0.00 200 o gatherConservativeVars
0.3 0.31 200 8 courantOnXY._omp_fn.1
0.24 0.00 200 ® _ memset_avx2_unalig...
0.24 0.00 116 W 0x0000000000109360
0.24 0.24 108 B _ memset_avx2_erms
0.20 0.00 &4 ® touchPage._omp_fn.0
017 0.16 1 o vtkfile

0.11 0.11 7916 B 0x00000000000198a0
0.06 0.06 7919 B 0x0000000000019660
0.05 0.00 1 o allocate_work_space

Project No. 671578

libpthread-2.24.50: pthread_create.c
libgomp.s0.1.0.0

hydro: riemanin.c

hydro: slope.c

ld-2.24.50

hydro

libc-2.24.50: libe-start.c

hydro: main.c, string3.h, unistd.h, stdio2.h
(unknown)

libgomp.se.1.0.0

hydro: hydro_godunowv.c

hydro: trace.c

hydro: riemann.c

hydro: slope.c

(unknown)

(unknown)

libm-2.24.50: 5_fmax.5
libm-2.24.50: 5_fmin.S

hydro: trace.c

hydro: cmpflx.c

hydro: equation_of_state.c

hydro: constoprim.c

hydro: gleftright.c

hydro: conservar.c

hydro: conservar.c

hydro: cmpflx.c

hydro: conservar.c

hydro: conservar.c

hydro: equation_of _state.c

hydro: conservar.c

hydro: compute_deltat.c

hydro: constoprim.c

hydro: gleftright.c

hydro: compute_deltat.c

hydro: conservar.c

hydro: compute_deltat.c
libc-2.24.50: memset-vec-unaligned-erms.s
{unknown)

libc-2.24.50: memset-vec-unaligned-erms.5
hydro: hydro_funcs.c

hydro: vtkfile.c, stdio2.h, string3.h
libgomp.50.1.0.0

libgomp.s0.1.0.0

hydro: hydro_funcs.c, stdio2.h

ExaNoDe Deliverable D2.3

Ir Ir per call

¥ 24.56 120 134 049
0.35 3399401
0.17 80912259
0.05 25 363 560
0.01 3121960
0.01 3108901

0.00 899 196
0.00 5663
0.00 3809
0.00 734
0.00 66 738
0.00 26179
0.00 40973
0.00 13 086
0.00 35
0.00 39
0.00 ™
0.00 3383
0.00 13
0.00 273
0.0 231

Count Callee
100 W hydro_godunov (hydro: hydre_godunov.c)
50 o compute_deltat (hydro: compute_deltat.c)

1 o vtkfile (hydro: vtkFfile.g, ...)
1 M allocate_work_space (hydro: hydro_funcs.c, ...)
1 ® hydro_init (hydro: hydro_funcs.c, ...}
1 B compute_deltat_init_mem (hydro: compute_deltat.c)
1 B 0x00000000001093cB

111 H 0x0000000000109378

100 M 0x00000000001094a0

400 W 0x00000000001033d0
1 H 0xDODOOD0000109470
2 M printTimings (hydro: main.c, ...)
1 M process_args (hydro: parametres.c, ...)
1 printTimingsLabel (hydro: main.c, ...)

303 o cclock (hydre: cclock.c)

202 W declock (hydro: celock.c)

100 M 0x00000000001094d0
1 o timeTosString (hydro: utils.c, ..)

151 M ceelaps (hydro: cclock.c)
4 H 0x00000000001034a8
3_W M ORONNNNN e fn

Parts Callees | CallGraph AllCallees Caller Map Machine Code

Figure 9: HydroC profile

Page 10

© Forschungszentrum Jilich

4.3 KKRnano

The KKRnano input deck was chosen to be the Zinc Oxide problem.
The results are shown in Figure 10 to Figure 14. We highlight the following observations:

o Like for the previously presented applications, BQCD and HydroC, the number of
instructions executed on both platforms is similar, although a slightly larger difference
IS observed.

e Unlike for the other applications the number of cycles is very similar. We expect this
to be due to the fact that this application tends to be limited by throughput of floating-
point operations, i.e. the very large difference in terms of available memory bandwidth
has a much smaller effect.

e This is consistent with the observation that the number of cache misses per instruction
is significantly lower for this application. While PAPI_L1_DCM/PAPI_TOT_INS is
about 0.03 and 0.5 for BQCD and HydroC, respectively, it is about 0.0005 for
KKRnano.

PAPI TOT_INS

8
7
&
3
4
3
2
1
0
1 2 3 4

CORES

1ed

M Trenz ™ JURECA

Figure 10: Total number of instructions for KKRnano

PAPI TOT_CYC

3
25
2
15
1
0.5
0
1 2 3 4

CORES

1e9

M Trenz M JURECA

Figure 11: Total number of clock cycles for KKRnano

Project No. 671578 ExaNoDe Deliverable D2.3 Page 11

Let

Project No. 671578

w

(%]

-

0

© Forschungszentrum Jilich

PAPI L1 DCM

1 2 3 4

CORES

M Trenz M JURECA

Figure 12: Number of L1 data cache misses for KKRnano

PAPI L2 DCM

15

10

N |

0]] N
1 2 3 4

CORES

H Trenz ®mJURECA

Figure 13: Number of L2 data cache misses for KKRnano

ExaNoDe Deliverable D2.3

Page 12

© Forschungszentrum Jilich

& callgrind.out.3511 [./minikkr] - 4 %

File view Go Settings Help

M open < Back = > Foowad - A Up w t% nelal:lvel “ Cycle Dekedlonj‘fikelatmto Parent <= Shorten Templates Instruction Fetch ol

Flat Profile B MAIN_

search: | | |[{No Grouping) > Types Callers AllCallers Callee Map | Source Code

Incl. Self Called Function Location

- 9343 3.77 3869 558 M <cycle 1> Id-2.24.50

W 6616 0.75 44 800 ® zgemm_nn <cycle 1> libopenblas_haswellp-r0.2.20.50

W 5623 W 56.23 985600 B zgemm_kernel_n libopenblas_haswellp-r0.2.20.50

¥ 2873 0.00 (0) @ Ox000D000000000C20 Id-2.24.50

¥ 2870 0.00 1 W _start minikkr

¥ 2870 0.00 1 B (below main) libe-2.24.50: libe-start.c

¥ 2870 0,00 1 8 main minikkr

¥ 28.69 0.01 1 8 __tfgmr_mod_MOD_be... minikkr

1 2418 0.30 10 W __tFigmr_mod_MOD_sol... minikkr

B 2378 0.00 5542 ® 0x00000000001 09938 {unknown)

B 2378 0.00 5 542 B GOMP_parallel libgomp.s0.1.0.0

I 1683 0.00 700 ® apply_precond_and_ma... minikkr

[} 16,82 0,00 700 ® _ kkroperator_mod_M... minikkr

I 1682 0.00 700 ® __bsrmm_mod_MOD_b... minikke

1 1568 0.00 3 ® 0x0000000000016¢c0 <... libgomp.s0.1.0.0

I 1052 1.33 6800 & __tfqmr_mod_MOD_col... minikke

1 8241 799 6 800 o __tFqmr_mod_MOD_col... minikkr
743 743 985600 W zgemm_oncopy libopenblas_haswellp-r0.2.20.50
7.41 0.08 5745934 5 0x0000000000109810 (unknown)
7.33 7.33 5745934 ® _gfortran_internal_pack libgfortran.so.3.0.0
4,49 0.00 9 H 0x00000000001 098b8 (ynknown} Ir ir per call Count Callee
4,49 0.00 9 ® _gfortran_transfer_array libgfortran.so.3.0.0 .
4.49 0.07 3078 B Ox00000000000e38e0 libgfortran.s0.3.0.0 W 28.69 1978819079 18 __tfgmr_mod_MOD_benchmark_tfgmr (minikkr)
437 0.03 1740 800 W 0x0000000000109958 (unknown) o.m 936455 1 M 0x0000000000105820
434 1.51 1740800 o zaxpy_ libopenblas_haswellp-r0.2.20.50 0.00 475 1 M 0x0000000000109528
428 009 49152 H 0x00000000000e1d30 libgfortran.50.3.0.0 0.00 3402 1 M 0x00000000001098d0
379 047 98304 W 0x00000000000e14a0 libgfortran.so.3.0.0 0.00 2999 1 8 0x00000000001058d8
280 001 1700 M _tfqmr_mod_MOD col... minikkr 0.00 202 1 0x00000000001098c8
267 0.03 1740800 o 0x0000000004caf480 (unknawn) 0.00 1768 b ittt
2.65 1.01 1740 800 o zaxpy_k libopenblas_haswellp-r0.2.20.50 0.00 1504 1 8 0x0000000000105580

- - 0.00 1204 1 ® 0x0000000000109828

2,60 0.67 2720 o __tfigmr_mod_MOD_col... minikkr
2.22 0.01 1700 B __tFgmr_mod_MOD_col... minikkr
1.73 0.40 2880 o __tfqmr_mod_MOD_col... minikkr

1.64 1.64 1740 800 W zaxpy_kernel_4 libopenblas_haswellp-ro.2.20.s0

1.51 0.06 737 280 M dznrm2_ =cycle 1> libopenblas_haswellp-r0.2.20.50

1.44 1.44 737 280 M znrm2_k libopenblas_haswellp-r0.2.20.50

1.39 0.00 27 520 W 0x0000000000109988 {unknown)

1.39 1.39 27920 ® GOMP_barrier libgomp.s0.1.0.0

1.30 0.07 98 319 W 0x00000000000e6490 ... libgfortran.s0.3.0.0

1.28 011 696 320 H zdotu_ <cycle 1> libopenblas_haswellp-r0.2.20.50

1.18 0.70 2 400 268 B 0x00000000000e3690 ... libgfortran.so.3.0.0

1.18 118 44 800 W zgemm_itcopy libopenblas_haswellp-r0.2.20.50

H; g;,]l 6:; ;;: : ::r:::j-k ::E:_':;_:l:;-;:iow:l::p‘m'z'zum Parts Callees | Call Graph All Callees Caller Map | Machine Code

Figure 14: KKRnano profile

Project No. 671578 ExaNoDe Deliverable D2.3 Page 13

© Forschungszentrum Jilich

4.4 miniFE

The input parameters for the experiment includes nx=10, ny=10, nz=10 without locking and
with calculations optimized for NUMA. The complete input deck is specified in the “specs-
minife.xml” file in the JUBE folder.

The results are shown in Figure 15 to Figure 19. We make the following observation(s):

e The number of instructions executed on the Trenz board cores exceeds those executed
by the JURECA cores by a factor 4-5. Whether this difference is due to code
generation inefficiencies or due to inefficiencies of OpenMP on the Trenz nodes
requires further investigation.

e Despite the L1 cache size and the aggregate L2 cache size available to 4 cores is the
same on both platforms, the number of L1 and L2 cache misses is significantly larger
on Trenz. However, the number of L1 and L2 cache misses per instruction is 0.007
and 0.003, respectively, and thus relatively small.

e The number of cycles required to execute miniFE on Trenz is about 8 times larger.
Given the relatively small number of L1 and L2 cache misses, this performance
difference seems to be mainly due to the difference in number of instructions in
combination with the larger throughput of instructions per cycle on the JURECA cores
(see Figure 23).

PAPI TOT_INS

16
14
12
g
&
4
2
: . H - -
1 2 3 4

CORES

le?
-
o

M Trenz M JURECA

Figure 15: Total number of instructions for miniFE

PAPI TOT CYC

leT

1 2

w
e

CORES

B Trenz M JURECA

Figure 16: Total number of cycles for miniFE

Project No. 671578 ExaNoDe Deliverable D2.3 Page 14

© Forschungszentrum Jilich

PAPI L1 DCM

w I I I I
[Ep]
2
0 l . .
1 2 3 4

CORES

[=1]

@

-

[¥]

M Trenz ™ JURECA

Figure 17: Number of L1 data cache misses for miniFE

PAPI L2 DCM

40
35
30
25
20
15
10
. || H H [
0
1 2 3 4

CORES

led

H Trenz ®mJURECA

Figure 18: Number of L2 data cache misses for miniFE

Project No. 671578 ExaNoDe Deliverable D2.3 Page 15

© Forschungszentrum Jilich

0.04 19917 M add_timestring_to_yam|(YAML_Doc&) (miniFE.x)

& callgrind.out.3294 [./miniFE.x input_file] -+ X
File View Go Settings Help
Py open < wack > Forward AUp « 4% Relative | “) Cycle Detection j&_melaﬂve to Parent <> Shorten Templates Instruction Fetch &
Flat Profile @ ® main
Search: (No Grouping) :
Incl. Self Called Function Location =
6566 2.04 2772 W <cycle 1> |d-2.24.50 <
- 6118 0.00 3 M start_thread <cycle 1> libpthread-2.24.50: pthread_create.c 2
- 61.18 0.02 3 ® 0x0000000000016¢cO libgomp.50.1.0.0 =]
W 4365 097 4 o void miniFE:perform_el... miniFE.x -] :
§ 38.82 0.00 (0) ® 0x0000000000000¢20 1d-2.24.50 3 2 '
§ 3223 000 1® _start miniFE.x @l © | %
| 3223 0.00 1 ® (below main) libc-2.24.50: libc-start.c = £ T
® 3197 000 1 2 main miniFE.x i o o
¥ 2897 0.00 1 ® int miniFE::driver<doubl... miniFE.x [€
¥ 214510 1583 1000 M void miniFE:Hex8:diffu... miniFE.x E E
§ 19.46 0.00 223 # 0x000000000010b418 (unknown) i
’ 1946 001 223 # GOMP_parallel libgomp.50.1.0.0
1 16.031 16.03 128 M miniFE:matvec_std<mi... miniFE.x
I 12,671 12,67 1000 M void miniFE:sum_in_sy... miniFE.x
I 11.00 0.00 1 # void miniFE:assemble_... miniFE.x
) 1100 007 1 ® void miniFE:perform_el,.. miniFE.x
I 776 0.02 1 @ int miniFE::generate_m... miniFE.x
7.08 2.77 1 M void miniFEzinit_matrix... miniFE.x
677 677 8 ® void miniFE:impose_dir... miniFE.x
671 0.02 1 ® void miniFE:cg_solve<... miniFE.x
6.61 1.88 1000 M void miniFE:Hex8:sour... mMiniFE.x
634 0.00 1M _dl_start 1d-2.24.50: rtld.c, get-dynamic-info.h, dl-machine.h, do-rel.h Ir irpercall |Count | Callee
634 0.00 1 ® _d|_sysdep_start |d-2.24.50: di-sysdep.c, dl-sysdep.c, dl-machine.h, cpu-features.c — - — —. —
634 0.0 1 m dl_main 1d-2.24.50: rtld.c, get-dynamic-info.h, setup-vdso.h, dl-osinfo.h ¥ 28.97 12837933 1 8Mint mnnufE::f!ryer<d9u§le, int, int>(Box const&, B.OX&' miniFE::Parameters&, YAML_Doc&) (miniF...
6.09 1.07 11 ® _dl_relocate_object 1d-2.24.50: dl-reloc.c, di-machine.h, do-rel.h, ldsodefs.h 203 898540 1 W miniFE:initialize_mpi(int, char**, int&, int&) (miniFE.x)
568 266 2991 M _dl lookup_symbol x 1d-2.24.50: dl-ookup.c 038 167543 1 YWL_Doc::gleneraFevAML‘[ablzcxx11]() (miniFE.x)
5.61 5.61 8000 ® void miniFE:Hex8:gradi... miniFE.x 015 66635 1 8 miniFE:finalize_mpi() (miniFE.x) .
480 4.80 895 B 0X0000000000019660 libgomp.50.1.0.0 0.08 36 965 1 M add_params_to_yaml(YAML_Doc&, miniFE:Parameters&) (miniFE.x)
4.73 4.73 8000 ™ void miniFE:Hex8:gradi... miniFE.x 200 25356 . omooooo_oooo!obns pile et
414 3.24 39848 W int miniFE=find row fo... MINIFEX 0.05 21174 : 8 add_configuration_to_yaml(YAML_Doc&, int, int) (miniFE.x)
1

3.79 3.79 892 M 0x00000000000198a0 libgomp.50.1.0.0 70 A o
3.02 221 2991 M do_lookup_x 1d-2.24.50: di-lookup.c, ldsodefs.h 0.03 14222 = miniFE:get_parameters(int, char**, miniFE:Parameters&) (miniFE.x)

210 197 4 M int miniFE:generate_m... miniFE.x 0.03 13216 1 M YAML_Doc::~YAML_Doc() (miniFEx)

203 0.00 1 W miniFEzinitialize_mpi(in... miniFE.x 0.03 5768 2 ® YAML_Element:add(std::__cxx11:basic_string<char, std::char_traits<char>, std::allocator<char>...
203 0.00 1 M 0x000000000010b408 (unknown) 0.02 97: “4’ 8 0x000000000010b388

203 000 1 ® PMPI_Init libmpi.s0.12.1.0 0.02 § (7324 o B 0x000000000010b270

1.67 020 2 ® void miniFEzimpose_dir... miniFE.x 0.02 5 = 0x000000000010b458 o ,

1.14 0.00 126 @ __memset_avx2_unalig... libc-2.24.50: memset-vec-unaligned-erms.S 0.02 6918 1 8 YAML_Element::add(std::__cxx11:basic_string<char, std:char_traitsechar>, std::allocator<chars...
114 0.00 39 ® 0x000000000010b290 (unknown) g-g: ? _9,2; : : 0x000000000010b3a8

114 114 33 B __memset_avx2_erms libc-2.24.50: memset-vec-unaligned-erms.S ok S i 0x000000000010b4a0

112 1,12 1000 o void miniFE:compute_g... miniFE.x 0.01 bt 0x000000000010b350

112 016 223 M 0x0000000000017010 libgomp.50.1.0.0 b s 04; : : 0x000000000010b3c8

1.04 1.04 1 ® MPIDI_RMA _init <cycle 1> libmpi.so.12.1.0 y 0{09000000001003318 2 s o

0.98 0.98 212 ® miniFE:TypeTraits<mini... miniFE.x non 18498 1 W miniFE-hraadcact narametecc/miniFE-Pacamatarsl) (miniFF ¥}

090 0.04 223 M GOMP_parallel_end libgomp.50.1.0.0 Parts callees | CallGraph AllCallees Caller Map Machine Code

Figure 19: miniFE profile

Project No. 671578 ExaNoDe Deliverable D2.3 Page 16

© Forschungszentrum Jilich

4.5 Throughput of instruction analysis

We calculate the average Instructions per Cycle (IPC) for the mini-applications as follows:
IPC = PAPI_TOT_INS / PAPI_TOT_CYC
The results are shown in Figure 20 to Figure 23.

BQCD

2 3

CORES

B Trenz B JURECA

Figure 20: IPC for BQCD

HYDROC

2 3

CORES

4

M Trenz ™ JURECA

Figure 21: IPC for HydroC

Project No. 671578 ExaNoDe Deliverable D2.3 Page 17

© Forschungszentrum Jilich

MINIKKR

2 3

CORES

]

15

[y

0.5

M Trenz M JURECA

Figure 22: IPC for KKRnano

MINIFE

2 3

CORES

M Trenz M JURECA

Figure 23: IPC for miniFE

4.6 Memory bandwidth analysis

We ran experiments using the SAXPY benchmark (single-precision scalar A times vector X
plus vector Y), where on output the input vector Y is replaced. SAXPY was executed for
vector lengths L = (1024, 2048, 4096, ..., 2097152) over a single thread. The performance
counters PAPI_TOT _INS (total instructions completed), PAPI_TOT_CYC (total cycles),
PAPI_L1 DCM (L1 data cache misses) and PAPI_L2_ DCM (L2 data cache misses) are
compared over varying vector lengths.

The results are shown in Figure 24 to Figure 27. We make the following observations:
e The number of instructions is similar on both platforms.

e The number of cycles on the Trenz prototype is almost an order of magnitude larger
compared to the JURECA node, which translates to an even larger difference in wall-
clock time taken the difference in clock frequency into account.

Project No. 671578 ExaNoDe Deliverable D2.3 Page 18

© Forschungszentrum Jilich

e Asignificant difference in number of cache misses is observed, of half an order of
magnitude, which is unexpected as the cache line size is the same on both
architectures.”

The memory bandwidth on the Trenz board was measured using the SAXPY benchmark to be
Bmem = 1.6 GByte/s. The kernel loop executes two flops per iteration, while having 2 loads
and one store operation (ignoring the load of the scalar variable), i.e. the arithmetic intensity
Al = (2/12) Flop/Byte = 0.17 Flop/Byte. Therefore, the maximum attainable performance for
scalar-vector multiplication and addition is Bg, = 0.27 GFlop/s. The peak performance for the
chip is Bfypeak = 1.5 GHz * 8 SP Flop/cycle = 12 GFlop/s. The maximum attainable
performance is therefore in this case about 2% of the peak performance.

PAPI_TOT_INS

100000000

10000000
1000000
100000

10000
210 2~11 2~12 213 214 2~15 2~16 2~17 2~18 219 2420 2~21

VECTOR LENGTH
=== Trenz === [JRECA
Figure 24: Total number of instructions for SAXPY

PAPL TOT_CYC

DOQOO0000
100000000
10000000
1000000
10000
10000

210 2*11 212z 213 2~14 2~15 216 2~17 2*18 2*19 220 221

VECTOR LENGTH

=== Trenz === [JRECA

Figure 25: Total number of cycles for SAXPY

* For large L we expect the number of cache misses to be about L/4. The number of L1 cache
misses observed for JURECA matches this expectation.

Project No. 671578 ExaNoDe Deliverable D2.3 Page 19

© Forschungszentrum Jilich

PAPI L1 DCM

1000000
100000
10000
1000

100
210 2+11 2~12 2*~13 214 215 2*16 2*17 2*18 219 220 221

VECTOR LENGTH
s Trenz wjes [URECA

Figure 26: Number of L1 data cache misses for SAXPY

PAPI L2 DCM

1000000

100000

10000

1000

2*10 211 2~12 2*13 2*14 2~15 2*s 217 2%18 2719 2t20 0 2M21

VECTOR LENGTH

=== Trenz ==w==|URECA

Figure 27: Number of L2 data cache misses for SAXPY

5 Summary and Concluding Remarks

The availability of several mini-applications, all with different computational characteristics,
facilitates performance evaluation of current and future ExaNoDe hardware components for
real-life applications. While in this report the focus was on results obtained on single nodes,
all mini-apps do support parallelisation over multiple nodes using MPI. While a performance
analysis for scaling to multiple nodes is still pending, within a single node the UNIMEM-
based version of MPI has been successfully tested on the prototype based on Trenz boards.

In units of number of cycles needed to execute the mini-applications on a single core, the
Trenz node is 2-8 times slower for all applications except for KKRnano. The difference in
performance is expected to be largely due to the memory bandwidth, which is significantly
smaller for the Trenz node compared to the JURECA node. However, also significant
differences in number of cache misses have been observed despite the similar aggregate size
of the caches.

Project No. 671578 ExaNoDe Deliverable D2.3 Page 20

6 References

[Brower2017]
[Dongarral999]
[Gruenwald2012]

[Heroux2009]

[JUBE]

[Lavallee2012]

[Nakamura2010]

[Thiess2012]

[UEABS]

Project No. 671578

© Forschungszentrum Jilich

R. Brower et al., “Lattice QCD Application Development within the
US DOE Exascale Computing Project,” arXiv:1710.11094.

J. Dongarra et al., “Top 500 Supercomputing Sites,” Technical Report,
University of Tennessee, Knoxville, USA, 1999

D. Griinwald, “BQCD With GPI. A Case Study,” HPCS’12, 2012
(doi:10.1109/HPCSim.2012.6266942).

M.A. Heroux et al., “Improving Performance via Mini-applications,”
Sandia Report SAND2009-5574, 2009 (doi: 10.2172/993908).

http://www.fz-
juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/ node.html

Pierre-Frangois Lavallée et al., “Porting and optimizing HYDRO to
new platforms and programming paradigms — lessons learnt,”
Technical report, PRACE, December 2012.

Y. Nakamura, H. Stiiben, ,,BQCD — Berlin Quantum Chromodynamics
program,” PoS LAT2010, 040, 2010 (arXiv:1011.0199).

A. Thiess et al., "Massively parallel density functional calculations for
thousands of atoms: KKRnano," Physical Review B, Vol. 85, 235103,
2012 (d0i:10.1103/PhysRevB.85.235103).
http://www.prace-ri.eu/ueabs/

ExaNoDe Deliverable D2.3 Page 21

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html
http://www.prace-ri.eu/ueabs/

