
I/O,	today,
is	Remote	(block)	Load/Store,	and

must	not be	slower	than	Compute,	any	more

Manolis	Katevenis
FORTH,	Heraklion,	Crete,	Greece	(in	collab.	with	Univ.	of	Crete)

http://www.ics.forth.gr/carv/



Acknowledgements

• Vassilis	Papaefstathiou
• Manolis	Marazakis
• Nikolaos	Chrysos
• Iakovos	Mavroidis
• John	Goodacre	(ARM,	KALEAO)
• and	many	many	more!...

2M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018



The	curse	of	being	perceived	as	“Slow”
• Tell	a	computer	engineer	that	something	is	slow
and	s/he	will	design-in	a	myriad	other	reasons
to	ensure	that	it	will	always… remain	slow!
– “Optimize	for	the	critical	path	and	the	common	case”

• Input/Output	(I/O)	hardware	was slow
⇒ Architecture	(virtualization)	and	Software	(OS,	

Languages,	Apps)	adjusted	assuming	that	I/O	is	slow

• I/O	hardware	is	no	longer	slow	– but…
– Architecture	&	Software	Inertia	“ensure”	that	it	remains

• Shared-Memory	Parallel	Programs	work	“over	Memory”
• Message-Passing	Parallel	Programs	work	“over	I/O”…

3M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018



I/O,	nowadays,	is	NVM’s	and	fast	Networks

• Slow	peripherals	only	indirectly	connected,	to	few	Proc’s
• Most	hi-speed	processors	are	in	Datacenters,	HPC	clusters

• Storage	becomes	Non-Volatile	Memories	– like	DRAM
– magnetic	disks	indirectly,	through	network	&	controllers

• High-speed	network	thruput	approaches	that	of	DRAM
• Short-range	(e.g.	on-board)	network	latency	has
no	reason	to	be	longer	than	DRAM	latency

4M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018



“Memory”	vs.	“I/O”	– once	upon	a	time	vs.	now
• “Memory	is	fast”	⇒ Virtualized	in	hardware,	at	ns	scale
– user	process	believes	it	owns	entire	address	space
– ld/st	instructions,	caches,	TLB	ensure	access	@	ns	scale

• “I/O	is	slow”	⇒ don’t	bother	to	optimize
– rarely	virtualized	at	user	level	(=process	owns	I/O	devices)
– L1-miss	L2-hit	(on-chip)	latency	on	the	order	of	10	ns
– on-chip	PL	(≈“I/O”)	register	read	in	Zynq	UltraScale+	
FPGA	on	the	order	of	100	ns	(~500	ns	for	PCIe)

Why??
• because	people	didn’t	think	it	was	worth	optimizing…

5M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018



Make	I/O	(interproc.	commun.)	a	first-class	citizen!
• Parallel	(&	distributed)	systems	are	ubiquitous	nowadays

• Interprocessor	Communication	is	as	important	as	
Computation

• Shared	Memory	communication	limited	to	~100’s	threads

• We	need	communication	across	hw-coherence	islands	
(“I/O”	to	nearby	chips)	to	be	as	fast	as	DRAM	access	
(which	is	also	”nearby	chips”)

• There	is	no	reason for	a	(16-64	By)	message	send-receive	
to	be	any	slower	than	a	cache-line	invalidate	to	a	nearby	
socket	followed	by	a	cache-line	miss	from	that	socket

6M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018



7M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Inefficiencies	in	Cluster	Communication,	to	be	overcomed

• Five	(5)	copyings	of	the	data,	instead	of	just	one	(1)	!
– Data	copying	consumes	time	and	energy

• Start	by	eliminating	(large)	NIC	buffers:
– DMA	across	the	network	– RDMA

user

kernel or lib

user

Sender NIC Receiver NIC

Receiver MemorySender Memory

Network

kernel or lib

cp
DMADMA

ideal (zero−copy) RDMA

cp



8M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

DMA	Initiation:	System	Call,	or	directly	from	User-Level	?

kernel or lib

user

Receiver Memory

kernel or lib

Network NINI

user Mem

user process

kernel

Sender
virtual addresses

dma write

addr.
cp phy.b

u
f

p
in

n
e
d

p
in

n
e
dcp

ideal (zero−copy) RDMA

ackack
DMAdma rd

vDMA

• System	Call	to	initiate	a	DMA	(with	physical	addr.) ≈		3	to	4	μs
– on	64-bit	ARM	in	Xilinx	Zynq	UltraScale+	under	Linux

• For	the	virtualized	DMA	engine	(8	channels),	that	accepts	virtual	
address	arguments,	Initiation	(writing	3-4	registers)		≈		<0.5	μs
• Next	Questions: Who	translates	addresses	&	where?

Why	copy	User	to/from	Kernel/Library?



9M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Scalability:	Global	Virtual	Addresses	&	Progressive	Translation

• for	Scalability:	not	all	nodes	can	be	required	to	know	all	other	nodes’	
translation	tables	–see	“Progressive	Address	Translation”	in	the	M.	
Katevenis	paper	in:	Stamatis	Vassiliadis	Symposium	2007
⇒ Destination	Addresses	in	network	packets	must	be	Virtual
• for	Scalability:	64-bit	GVA	+	(global)	protection	domain	identifier

archy
Hier−

T
ra

n
sl

a
te

 (
M

M
U

)

T
ra

n
sl

a
te

 (
M

M
U

)

Memory

archy
Hier−

nation
Desti−

Routing

re
a
d

Copy (RDMA) Engine

Data

w
ri
te

Network

Global
Virtual

Address
Space

src addr

PID

dst addr

64−bit
virtual

addresses

Memory

Source



Current	Address	Translation	Architectures	not	ready	for	GVAS

vDMA engine

read or write addresses,
virtual or physical,
but truncated to:

SMMU

addresses

44 bits

translate
if virtual

448 GBy window

phy. address
route based on

physical−only

P
ro

g
ra

m
m

a
b
le

 L
o
g
ic

 −
 P

L

to other PS peripheral devices

P
ro

g
ra

m
m

in
g
 S

ys
te

m
 −

 P
S

Cores
Processor

Caches

local

DRAM

F
P

G
A

40 bits

10M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

• Address	translation	architecture	of	A53	in	Xilinx	Zynq	UltraScale+
• DMA	engine	is	virtualized,	but	truncates	virtual	addresses	to	<64	b
• no	mechanism	to	send	the	untranslated	VA	to	the	network
• (remote)	load/store	instructions	suffer	compulsory	addr.	translation



11M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Mbox	– Remote	Enqueue:	Asynchronous	Event	Multiplexing

• The basic	synchronization mechanism	for	parallel	programs,	I	believe
• Event	Multiplexor	– requests,	notifications	(like	Select system	call)
• Atomic	enqueue	into	shared	space,	unlike	dedicated	space	with	RDMA
• Space	reserved	only	for	number	of	actual	senders	– not	potential	senders

m2

m2P2

P1

m1

m1

store
sent via single store

instruction

single−word messages

Multiple
Senders

memory 2

longer messages: first composed locally...

... then
sent

Shared Space

"Mbox"

Remote
Queue

memory 3

Single
Receiver

empty
wait on

P3



12M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Store-multiple	instruction	for	atomic-packet	send	(remEnq)	?

• Need	a	fast	way	to	send	a	single,	guaranteed-atomic	network	packet
• Store-multiple	(registers)	instruction	exists	on	ARMv8,	but…
• its	current	imlementation	does	not guarantee	that	all	data	words
will	be	transferred	in	a	single	AXI	burst	to	the	“I/O”	hardware…

m2

P2

P1

m1

m1

store
sent via single store

instruction

single−word messages

Multiple
Senders

longer messages − alternative: first composed locally...

... then
sent

Shared Space

"Mbox"

Remote
Queue

memory 3

Single
Receiver

empty
wait on

store−multiple:

atomic packet??
P3

m2

m2



13M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Per-Task	Mbox	Q’s	&	Scheduler	as	Interrupt	Generalization

• Tasks	block	and	wait	when	synchronously	reading	from	an	empty	queue
• Scheduler	selects	a	non-empty	queue	of	highest	priority	and	runs	its	task
• Time	quantum	switches	Q’s	and	Tasks	inside	top	non-empty	priority	class
• Enqueues	into	higher	priority	Q’s	interrupt	lower-priority	running	tasks

RDMA	is	the	Datapath	– Queues	are	the	Control

Scheduler

low−power sleep

T11
Q11

Q21
T21

Q01
T01

arriving
now

High

Low

ri
ty

P
ri
o
−

/ Tasks
ProcessesEvent Queues

switch task per time quantum

core
P

Interrupt !

when all Queues Empty

Run



14M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Why	copy	data	between	User	and	Kernel/Library	buffers?

kernel or lib

user

Receiver Memory

kernel or lib

Network NINI

user Mem

user process

kernel

Sender
virtual addresses

dma write

addr.
cp phy.b

u
f

p
in

n
e
d

p
in

n
e
dcp

ideal (zero−copy) RDMA

ackack
DMAdma rd

vDMA

• “Pinned”	buffers:	traditional	DMA	does	not	tolerate	page	faults
• “Registered”	buffer	addresses,	in	the	lack	of	“System”	(I/O)	MMU
• Non-cacheable	buffers,	in	the	lack	of	cache-coherent	DMA
• Send	buffer	reuse	immediately	after	send	initiation
• Transfer	occurs	before	receive-buffer	ready,	and	receive	Application	
unwilling	to	accept	reception	at	library-specified	address



15M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

MPI:		Send-Rcv	Match	at	Receiver,	User-Specified	Rcv	Addr

• cost	=	one	extra	network	round-trip	time	for	sender	to	learn	the	address

sb

read from rb
(user process):

Consumerdone

(done)

send
write into sb

(user process):
Producer

match

(early) receive
ready to send,

pointer to rb

at which address?
ready to
receive,

buffer,
please!

but in my

rb



16M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Snd-Rcv	Match	at	Sender,	User-Specified	Receive	Address

• minimal	latency	achieved;	early	receive	(rb	pre-alloc	by	user)	still	needed
• does	not	work	with	MPI_ANY_SOURCE

sb

read from rb
(user process):

Consumerdone

(done)

send

match

Producer
(user process):

write into sb

(early) receive
ready to
receive,

buffer,
please!

but in my

pointer to rb

rb



17M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Receiver	willing	to	accept	Data	at	any	Address	(and	not	copy)

sb

send

write into sb

Producer
(user process):

read from rb
(user process):

Consumerdone

(done)

match

"allocate buffer, and...
here come the data"
or "use rb[i] that had been

preallocated for me

rcv

tell me when
and where
my data
will be ready

rb

• Eager	delivery	at	preallocated,	library-managed	buffer,	then	given	to	user



Conclusions

• “I/O”	is	Interprocessor	Communication…

• … and	it	should	be	made	as	fast	as	Compute

• Short	messages:	(remote)	load/store-multiple	instructions

• Long	messages:	virtualized	DMA	engine	– no	system	calls

• Global	Virtual	Address	Space	(GVAS)
• RDMA	is	the	Datapath	– Queues	(mbox)	are	the	Control

18M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018



Back-up	Slides

19M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018



20M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Two	Slides	from	my	Stamatis	Vassiliadis	2007	Symposium talk:
Network	Routing	as	Generalization	of	Address	Decoding

• Physical	Address	Decoding	
in	a	uniprocessor

Addr.
Physi cal

2

Data

(a) (b)

body hdr
Packet

address
desti nati on
of physical

2 MS bi ts

SRAM
0

SRAM
1

I/O

1x: I/O
01: SRAM 1
00: SRAM 0

Bridge

Node
2

Node
3

Node
1

Node
0

P

SRAM

00:
1x:
01:

10:
11:P

• Geographical	Address	
Routing	in	a	multiprocessor

http://www.ics.forth.gr/carv/ipc/ldstgen_katevenis07.pdf



21M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Progressive	Address	Translation:	Localize	Migration	Updates

• Packets	carry	global	virtual	addresses
• Tables	provide	physical	route	(address)	for	the	next	few	steps
• When	page	9	migrates	within	D,	only	tables	in	that	domain	need	updating
• Variable-size-page	translation	tables	look	like	internet	routing	tables	
(longest-prefix	matches	if	we	want	small-page-within-big-region	migration)

• Tables	that	partition	the	system,	for	protection	against	untrusted	operating	
systems,	look	like	internet	firewalls

0100
00xx
1x xx
011x

0010
000x

1110
1111

110x
10xx

1000
101x
1001

1001

110x

1001

Tbl_A
Tbl_B

Tbl_D1 Tbl_D3

pg9'

pg9

Tbl_C Tbl_D2

Domain D

P


