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The	curse	of	being	perceived	as	“Slow”
• Tell	a	computer	engineer	that	something	is	slow
and	s/he	will	design-in	a	myriad	other	reasons
to	ensure	that	it	will	always… remain	slow!
– “Optimize	for	the	critical	path	and	the	common	case”

• Input/Output	(I/O)	hardware	was slow
⇒ Architecture	(virtualization)	and	Software	(OS,	

Languages,	Apps)	adjusted	assuming	that	I/O	is	slow

• I/O	hardware	is	no	longer	slow	– but…
– Architecture	&	Software	Inertia	“ensure”	that	it	remains

• Shared-Memory	Parallel	Programs	work	“over	Memory”
• Message-Passing	Parallel	Programs	work	“over	I/O”…
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I/O,	nowadays,	is	NVM’s	and	fast	Networks

• Slow	peripherals	only	indirectly	connected,	to	few	Proc’s
• Most	hi-speed	processors	are	in	Datacenters,	HPC	clusters

• Storage	becomes	Non-Volatile	Memories	– like	DRAM
– magnetic	disks	indirectly,	through	network	&	controllers

• High-speed	network	thruput	approaches	that	of	DRAM
• Short-range	(e.g.	on-board)	network	latency	has
no	reason	to	be	longer	than	DRAM	latency
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“Memory”	vs.	“I/O”	– once	upon	a	time	vs.	now
• “Memory	is	fast”	⇒ Virtualized	in	hardware,	at	ns	scale
– user	process	believes	it	owns	entire	address	space
– ld/st	instructions,	caches,	TLB	ensure	access	@	ns	scale

• “I/O	is	slow”	⇒ don’t	bother	to	optimize
– rarely	virtualized	at	user	level	(=process	owns	I/O	devices)
– L1-miss	L2-hit	(on-chip)	latency	on	the	order	of	10	ns
– on-chip	PL	(≈“I/O”)	register	read	in	Zynq	UltraScale+	
FPGA	on	the	order	of	100	ns	(~500	ns	for	PCIe)

Why??
• because	people	didn’t	think	it	was	worth	optimizing…
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Make	I/O	(interproc.	commun.)	a	first-class	citizen!
• Parallel	(&	distributed)	systems	are	ubiquitous	nowadays

• Interprocessor	Communication	is	as	important	as	
Computation

• Shared	Memory	communication	limited	to	~100’s	threads

• We	need	communication	across	hw-coherence	islands	
(“I/O”	to	nearby	chips)	to	be	as	fast	as	DRAM	access	
(which	is	also	”nearby	chips”)

• There	is	no	reason for	a	(16-64	By)	message	send-receive	
to	be	any	slower	than	a	cache-line	invalidate	to	a	nearby	
socket	followed	by	a	cache-line	miss	from	that	socket
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Inefficiencies	in	Cluster	Communication,	to	be	overcomed

• Five	(5)	copyings	of	the	data,	instead	of	just	one	(1)	!
– Data	copying	consumes	time	and	energy

• Start	by	eliminating	(large)	NIC	buffers:
– DMA	across	the	network	– RDMA

user

kernel or lib

user

Sender NIC Receiver NIC

Receiver MemorySender Memory

Network

kernel or lib

cp
DMADMA

ideal (zero−copy) RDMA

cp



8M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

DMA	Initiation:	System	Call,	or	directly	from	User-Level	?
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• System	Call	to	initiate	a	DMA	(with	physical	addr.) ≈		3	to	4	μs
– on	64-bit	ARM	in	Xilinx	Zynq	UltraScale+	under	Linux

• For	the	virtualized	DMA	engine	(8	channels),	that	accepts	virtual	
address	arguments,	Initiation	(writing	3-4	registers)		≈		<0.5	μs
• Next	Questions: Who	translates	addresses	&	where?

Why	copy	User	to/from	Kernel/Library?



9M.	Katevenis:	I/O	is	no	longer	slow		- Per'18	Workshop,	Goteborg	May	2018

Scalability:	Global	Virtual	Addresses	&	Progressive	Translation

• for	Scalability:	not	all	nodes	can	be	required	to	know	all	other	nodes’	
translation	tables	–see	“Progressive	Address	Translation”	in	the	M.	
Katevenis	paper	in:	Stamatis	Vassiliadis	Symposium	2007
⇒ Destination	Addresses	in	network	packets	must	be	Virtual
• for	Scalability:	64-bit	GVA	+	(global)	protection	domain	identifier
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Current	Address	Translation	Architectures	not	ready	for	GVAS
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• Address	translation	architecture	of	A53	in	Xilinx	Zynq	UltraScale+
• DMA	engine	is	virtualized,	but	truncates	virtual	addresses	to	<64	b
• no	mechanism	to	send	the	untranslated	VA	to	the	network
• (remote)	load/store	instructions	suffer	compulsory	addr.	translation
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Mbox	– Remote	Enqueue:	Asynchronous	Event	Multiplexing

• The basic	synchronization mechanism	for	parallel	programs,	I	believe
• Event	Multiplexor	– requests,	notifications	(like	Select system	call)
• Atomic	enqueue	into	shared	space,	unlike	dedicated	space	with	RDMA
• Space	reserved	only	for	number	of	actual	senders	– not	potential	senders
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Store-multiple	instruction	for	atomic-packet	send	(remEnq)	?

• Need	a	fast	way	to	send	a	single,	guaranteed-atomic	network	packet
• Store-multiple	(registers)	instruction	exists	on	ARMv8,	but…
• its	current	imlementation	does	not guarantee	that	all	data	words
will	be	transferred	in	a	single	AXI	burst	to	the	“I/O”	hardware…
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Per-Task	Mbox	Q’s	&	Scheduler	as	Interrupt	Generalization

• Tasks	block	and	wait	when	synchronously	reading	from	an	empty	queue
• Scheduler	selects	a	non-empty	queue	of	highest	priority	and	runs	its	task
• Time	quantum	switches	Q’s	and	Tasks	inside	top	non-empty	priority	class
• Enqueues	into	higher	priority	Q’s	interrupt	lower-priority	running	tasks

RDMA	is	the	Datapath	– Queues	are	the	Control
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Why	copy	data	between	User	and	Kernel/Library	buffers?
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• “Pinned”	buffers:	traditional	DMA	does	not	tolerate	page	faults
• “Registered”	buffer	addresses,	in	the	lack	of	“System”	(I/O)	MMU
• Non-cacheable	buffers,	in	the	lack	of	cache-coherent	DMA
• Send	buffer	reuse	immediately	after	send	initiation
• Transfer	occurs	before	receive-buffer	ready,	and	receive	Application	
unwilling	to	accept	reception	at	library-specified	address
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MPI:		Send-Rcv	Match	at	Receiver,	User-Specified	Rcv	Addr

• cost	=	one	extra	network	round-trip	time	for	sender	to	learn	the	address
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Snd-Rcv	Match	at	Sender,	User-Specified	Receive	Address

• minimal	latency	achieved;	early	receive	(rb	pre-alloc	by	user)	still	needed
• does	not	work	with	MPI_ANY_SOURCE
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Receiver	willing	to	accept	Data	at	any	Address	(and	not	copy)

sb

send

write into sb

Producer
(user process):

read from rb
(user process):

Consumerdone

(done)

match

"allocate buffer, and...
here come the data"
or "use rb[i] that had been

preallocated for me

rcv

tell me when
and where
my data
will be ready

rb

• Eager	delivery	at	preallocated,	library-managed	buffer,	then	given	to	user



Conclusions

• “I/O”	is	Interprocessor	Communication…

• … and	it	should	be	made	as	fast	as	Compute

• Short	messages:	(remote)	load/store-multiple	instructions

• Long	messages:	virtualized	DMA	engine	– no	system	calls

• Global	Virtual	Address	Space	(GVAS)
• RDMA	is	the	Datapath	– Queues	(mbox)	are	the	Control
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Back-up	Slides
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Two	Slides	from	my	Stamatis	Vassiliadis	2007	Symposium talk:
Network	Routing	as	Generalization	of	Address	Decoding

• Physical	Address	Decoding	
in	a	uniprocessor
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• Geographical	Address	
Routing	in	a	multiprocessor

http://www.ics.forth.gr/carv/ipc/ldstgen_katevenis07.pdf
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Progressive	Address	Translation:	Localize	Migration	Updates

• Packets	carry	global	virtual	addresses
• Tables	provide	physical	route	(address)	for	the	next	few	steps
• When	page	9	migrates	within	D,	only	tables	in	that	domain	need	updating
• Variable-size-page	translation	tables	look	like	internet	routing	tables	
(longest-prefix	matches	if	we	want	small-page-within-big-region	migration)

• Tables	that	partition	the	system,	for	protection	against	untrusted	operating	
systems,	look	like	internet	firewalls
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