
12017-08-30 DSD Conference Copyright © 2017 Members of the ExaNoDe Consortium Kevin Pouget

contact: denis.dutoit@cea.fr, project coordinator

European Exascale Processor & Memory Node Design

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671578

Welcome!

hello

Copyright © 2018 Members of the ExaNoDe Consortium

Disclaimer: This presentation does not represent the opinion of the EC and the EC is not responsible for any use that might be made of
information appearing herein.

Virtualization for HPCVirtualization for HPC
in the ExaNoDe/ExaNeSt projectsin the ExaNoDe/ExaNeSt projects

ExascaleHPC workshop
HiPEAC conference, Manchester, UK

K Pouget, A. Mouzakitis,
R. Dimitrov, A. Rigo, D. Raho

Virtual Open Systems

January 23rd 2018

Copyright © 2018 Members of the ExaNoDe Consortium

 Introduction
Virtualization in ExaNoDe/ExaNeSt and HPC

Virtualization layer
⇐⇒

extra level of hardware resource control

• Manageability for admins

� pause/unload/migrate VMs

• Flexibility for users

� full control of SW eco-system

− kernel, libraries, filesystem

• Resiliency to hardware failures

� periodic state checkpointing

• Performance?

� paravirtualization/network optim.

1/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Introduction
Virtualization in ExaNoDe/ExaNeSt and HPC

Virtualization layer
⇐⇒

extra level of hardware resource control

• Manageability for admins

� pause/unload/migrate VMs

• Flexibility for users

� full control of SW eco-system

− kernel, libraries, filesystem

• Resiliency to hardware failures

� periodic state checkpointing

• Performance?

� paravirtualization/network optim.

1/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Introduction
Virtualization in ExaNoDe/ExaNeSt and HPC

Virtualization layer
⇐⇒

extra level of hardware resource control

• Manageability for admins

� pause/unload/migrate VMs

• Flexibility for users

� full control of SW eco-system

− kernel, libraries, filesystem

• Resiliency to hardware failures

� periodic state checkpointing

• Performance?

� paravirtualization/network optim.

1/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Introduction
Virtualization in ExaNoDe/ExaNeSt and HPC

Virtualization layer
⇐⇒

extra level of hardware resource control

• Manageability for admins

� pause/unload/migrate VMs

• Flexibility for users

� full control of SW eco-system

− kernel, libraries, filesystem

• Resiliency to hardware failures

� periodic state checkpointing

• Performance?

� paravirtualization/network optim.

1/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Introduction
Virtualization in ExaNoDe/ExaNeSt and HPC

Virtualization layer
⇐⇒

extra level of hardware resource control

• Manageability for admins

� pause/unload/migrate VMs

• Flexibility for users

� full control of SW eco-system

− kernel, libraries, filesystem

• Resiliency to hardware failures

� periodic state checkpointing

• Performance?

� paravirtualization/network optim.

1/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Virtualization for HPC
in the ExaNoDe/ExaNeSt projects

Live and Incremental Checkpointing
Definitions and Challenges
Page Fault Handling

Unimem RDMA Para-Virtualization
API Remoting Layers
Para-Virtualization Techniques
Experimental Results

2/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

Live and Incremental Checkpointing

2/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Live and Incremental Checkpointing
Definitions and Challenges

Checkpointing

Saving periodically the state of a VM to file, to restore it later,
maybe on another machine.

3/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Live and Incremental Checkpointing
Definitions and Challenges

Incremental checkpoint

A full checkpoint copies the whole memory to the disk.
An incremental one copies only the modified (dirty) pages.
3 less guest downtime and less disk occupation

3/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Live and Incremental Checkpointing
Definitions and Challenges

Live checkpointing

Saving the VM memory to disk takes time. During a live
checkpoint, the VM is running while the memory is being copied.
3 less guest downtime

3/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Live and Incremental Checkpointing
Going live and incremental: Page Fault Handling

Handling of page write faults

• On checkpoint request:
� stop the VM
� mark all the pages as write-protected
� start sequential page saving thread
� start fault-handler thread
� restart the VM

4/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Live and Incremental Checkpointing
Going live and incremental: Page Fault Handling

Handling of page write faults

1. page fault on page not dirty

• no special care

1. add to next checkpoint dirty queue

2. remove the page write-protection

(not visible, for alignment)

4/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Live and Incremental Checkpointing
Going live and incremental: Page Fault Handling

Handling of page write faults

2. page fault on already saved dirty page

• no special care

1. add to next checkpoint dirty queue

2. remove the page write-protection

(not visible, for alignment)

4/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Live and Incremental Checkpointing
Going live and incremental: Page Fault Handling

Handling of page write faults

3. page fault on dirty page not saved to disk

• save it before it’s overwritten!

1. copy content to shadow memory

2. add to next checkpoint dirty queue

3. remove the page write-protection

4/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Live and Incremental Checkpointing
Going live and incremental: Page Fault Handling

Handling of page write faults

4. page fault the dirty page being saved to disk

• avoid race condition, block until saved

1. wait until page marked as saved

2. add to next checkpoint dirty queue

3. remove the page write-protection

4/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

Unimem RDMA Para-Virtualization

4/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 API Remoting Layers

API Remoting para-virtualization allows calling
host libraries from inside virtual machines.
e.g. : for accessing hardware accelerators.

VM

Application

API Remoting
Frontend

VM

Application

API Remoting
Frontend

API Remoting Transport Layer

API Remoting
Backend

Target RDMA API

RDMA Engine

Application

5/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 API Remoting Layers

• Frontend

� Shared library stub in the guest
� Implementing the remoted API
� Forwarding the requests to the host

• Transport layer

� Host-VM shared memory + virtio

� Zero-copy accesses to DMA buffers

• Backend

• RDMA library

VM

Application

API Remoting
Frontend

VM

Application

API Remoting
Frontend

API Remoting Transport Layer

API Remoting
Backend

Target RDMA API

RDMA Engine

Application

6/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 API Remoting Layers

• Frontend

� Shared library stub in the guest
� Implementing the remoted API
� Forwarding the requests to the host

• Transport layer

� Host-VM shared memory + virtio

� Zero-copy accesses to DMA buffers

• Backend

• RDMA library

VM

Application

API Remoting
Frontend

VM

Application

API Remoting
Frontend

API Remoting Transport Layer

API Remoting
Backend

Target RDMA API

RDMA Engine

Application

6/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 API Remoting Layers

• Frontend

� Shared library stub in the guest
� Implementing the remoted API
� Forwarding the requests to the host

• Transport layer

� Host-VM shared memory + virtio

� Zero-copy accesses to DMA buffers

• Backend

• RDMA library

VM

Application

API Remoting
Frontend

VM

Application

API Remoting
Frontend

API Remoting Transport Layer

API Remoting
Backend

Target RDMA API

RDMA Engine

Application

6/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 The Backend

• Host process linked to the remoted library

� handles the guest requests
� sends back return values/errors

• Listening for new VMs and applications

� supports multiple VMs
� supports multiple apps per VM

� spawns one thread per guest application

� each thread has a private . . .

− shared memory space with frontend
− file descriptor to the zero-copy

framework in the kernel

VM

Application

API Remoting
Frontend

VM

Application

API Remoting
Frontend

API Remoting Transport Layer

API Remoting
Backend

Target RDMA API

RDMA Engine

Application

7/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 The RDMA Library

VM

Application

API Remoting
Frontend

VM

Application

API Remoting
Frontend

API Remoting Transport Layer

API Remoting
Backend

Target RDMA API

RDMA Engine

Application

• Custom API from Forth (cDMA)

• Support synchronous and asynchronous transfers

� Polling mode
� Interrupt mode

• Transactions programmed using a user-space driver

� DMA buffer allocation managed in the kernel

8/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 RDMA Buffer Allocation
On a DMA buffer allocation call from the application

Guest
Virtual Memory

Guest
Physical Memory

Host
Virtual Memory

Host
Physical Memory

RDMA Bufer allocated by guestin the frontend (guest)

1. allocate the space with mmap

2. send the VA to the backend

in the backend

9/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 RDMA Buffer Allocation
On a DMA buffer allocation call from the application

Guest
Virtual Memory

Guest
Physical Memory

Host
Virtual Memory

Host
Physical Memory

RDMA Bufer allocated by guestin the frontend (guest)

1. allocate the space with mmap

2. send the Virtual Address (VA) to
the backend

in the backend

9/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 RDMA Buffer Allocation
On a DMA buffer allocation call from the application

Guest
Virtual Memory

Guest
Physical Memory

Host
Virtual Memory

Host
Physical Memory

RDMA Bufer allocated by guest

Bufer
allocated
by RDMA

in the frontend (guest)

1. allocate the space with mmap

2. send the VA to the backend

in the backend

3. allocate the DMA buffer

9/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 RDMA Buffer Allocation
On a DMA buffer allocation call from the application

Guest
Virtual Memory

Guest
Physical Memory

Host
Virtual Memory

Host
Physical Memory

RDMA Bufer allocated by guest

Bufer
allocated
by RDMA

in the frontend (guest)

1. allocate the space with mmap

2. send the VA to the backend

in the backend

3. allocate the DMA buffer

4. pass to the kernel :

• the DMA buffer’s VA
• the guest buffer’s VA
⇒ physical address looked up

9/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 RDMA Buffer Allocation
On a DMA buffer allocation call from the application

Guest
Virtual Memory

Guest
Physical Memory

Host
Virtual Memory

Host
Physical Memory

RDMA Bufer allocated by guest

Bufer
allocated
by RDMA

in the frontend (guest)

1. allocate the space with mmap

2. send the VA to the backend

in the backend

3. allocate the DMA buffer

4. pass the VAs to the kernel

5. remove guest buffer pages from
QEMU address space

9/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 RDMA Buffer Allocation
On a DMA buffer allocation call from the application

Guest
Virtual Memory

Guest
Physical Memory

Host
Virtual Memory

Host
Physical Memory

RDMA Bufer allocated by guest

Bufer
allocated
by RDMA

in the frontend (guest)

1. allocate the space with mmap

2. send the VA to the backend

in the backend

3. allocate the DMA buffer

4. pass the VAs to the kernel

5. remove guest buffer pages from
QEMU address space

6. insert in-place the pages of the
DMA buffer

9/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Completion-event forwarding

1. the RDMA generates an event

2. and dispatches it to the backend;

3. the event is forwarded to the VM
... through the host kernel;

4. the guest kernel receives it
(via a virtio message)

5. and signals the frontend library;

6. the frontend runs the callback

10/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Completion-event forwarding

1. the RDMA generates an event

2. and dispatches it to the backend;

3. the event is forwarded to the VM
... through the host kernel;

4. the guest kernel receives it
(via a virtio message)

5. and signals the frontend library;

6. the frontend runs the callback

10/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Experimental Results
Transfer rate for a single transfer

• Maximum of 7% overhead (with 512KiB buffers)

(higher is better)

11/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Experimental Results
DMA buffer allocation

• Tangible overhead only at the allocation time

(lower is better)

12/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

Conclusion

12/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Unimem RDMA Para-Virtualization
Bigger picture in ExaNoDe/ExaNeSt

High-performance multi-host virtualization layer

API Remoting Resiliency Networking

Future work

Assemble all of that, and get it running in the prototypes!

13/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Unimem RDMA Para-Virtualization
Bigger picture in ExaNoDe/ExaNeSt

High-performance multi-host virtualization layer

API Remoting

• UNIMEM RDMA,
mailbox, atomics

• MPI, OpenCL

Resiliency Networking

Future work

Assemble all of that, and get it running in the prototypes!

13/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Unimem RDMA Para-Virtualization
Bigger picture in ExaNoDe/ExaNeSt

High-performance multi-host virtualization layer

API Remoting

• UNIMEM RDMA,
mailbox, atomics

• MPI, OpenCL

Resiliency

• multi-host/VM
checkpointing

• live migration

Networking

Future work

Assemble all of that, and get it running in the prototypes!

13/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Unimem RDMA Para-Virtualization
Bigger picture in ExaNoDe/ExaNeSt

High-performance multi-host virtualization layer

API Remoting

• UNIMEM RDMA,
mailbox, atomics

• MPI, OpenCL

Resiliency

• multi-host/VM
checkpointing

• live migration

Networking

Optimize communications

• between same-host VM

• multi-host by UNIMEM

Future work

Assemble all of that, and get it running in the prototypes!

13/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

Copyright © 2018 Members of the ExaNoDe Consortium

 Unimem RDMA Para-Virtualization
Bigger picture in ExaNoDe/ExaNeSt

High-performance multi-host virtualization layer

API Remoting

• UNIMEM RDMA,
mailbox, atomics

• MPI, OpenCL

Resiliency

• multi-host/VM
checkpointing

• live migration

Networking

Optimize communications

• between same-host VM

• multi-host by UNIMEM

Future work

Assemble all of that, and get it running in the prototypes!

13/13
January 23rd 2018
ExascaleHPC workshop Virtual Open Systems

52017-08-30 DSD Conference Copyright © 2017 Members of the ExaNoDe Consortium Kevin Pouget

contact: denis.dutoit@cea.fr, project coordinator
www.exanode.eu

European Exascale Processor & Memory Node Design

Thank you!

	Introduction
	Live and Incremental Checkpointing
	Definitions and Challenges
	Page Fault Handling

	Unimem RDMA Para-Virtualization
	API Remoting Layers
	Para-Virtualization Techniques
	Experimental Results

