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×10 every 5 years 

Computation energy efficiency trend 1) 

1) H. Tamura, “Looking to the Future: Projected Requirements for Wireline Communications Technology”, IEEE Solid-State Circuits Magazine, Vol. 7, No 4, pp. 53 – 62, 2015. 
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 Exascale Manchester Interconnect (EMI) v1.0: 
 Energy: 44.5 fJ/bit, Speed: 2 Gb/s/wire (SDR), bandwidth: 256 Gb/s (128-wire link), 5 Tb/s/mm2 

 Advanced body biasing scheme for parameter variability trimming  

 Up to 3× less power consumption compared to a standard full swing solution (< 0.1 pJ/bit) 

 Over 5× less switching noise compared to a standard full swing solution 

 Latency: 2 clock cycles from TX to RX (0.41 ns for level conversion and signal prapagation) 
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1-bit line @ 2 Gb/s (clock shielding) – EYE DIAGRAM  
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1-bit line @ 2 Gb/s (clock shielding) – SWITCHING NOISE  

EMI v1.0 RMS NOISE 0.53 mAFull Swing RMS NOISE 2.46 mA
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