Ultra-Low Swing Transceiver for Energy Efficient Communiction in 2.5-D Integrated Systems

Przemyslaw Mroszczyk & Vasilis Pavlidis School of Computer Science The University of Manchester M13 9PL, Manchester, UK

Why Communication matters?

Year

Communication energy efficiency trend 1)

~30% of energy for communication

²⁾ M. Horowitz, "Computing's energy problem (and what we can do about it)", IEEE International Solid-State Circuits Conference, pp. 10 – 14, Mar. 2014

¹⁾ H. Tamura, "Looking to the Future: Projected Requirements for Wireline Communications Technology", IEEE Solid-State Circuits Magazine, Vol. 7, No 4, pp. 53 – 62, 2015.

Why Communication matters?

2.5-D Chiplet to Chiplet Physical Interconnect

Cross section of the interconnect with single-ended low swing I/O interface

Physical view of the interposer with the projected location of the transceiver and the passive link

Low Swing Signaling Scheme

Transmitter and Receiver Design

Parameter Variability in TX

Parameter Variability in RX

Transceiver Trimming

Transceiver Optimization

EMI v1.0 Transceiver in 28nm FDSOI

Exascale Manchester Interconnect (EMI) v1.0:

- Energy: 44.5 fJ/bit, Speed: 2 Gb/s/wire (SDR), bandwidth: 256 Gb/s (128-wire link), 5 Tb/s/mm²
- Advanced body biasing scheme for parameter variability trimming
- Up to 3× less power consumption compared to a standard full swing solution (< 0.1 pJ/bit)
- Over 5× less switching noise compared to a standard full swing solution
- Latency: 2 clock cycles from TX to RX (0.41 ns for level conversion and signal prapagation)

EMI v1.0 in 28nm FDSOI with ExaLet (1.3mm)

1-bit line @ 2 Gb/s (clock shielding) – EYE DIAGRAM

EMI v1.0 in 28nm FDSOI with ExaLet (1.3mm)

1-bit line @ 2 Gb/s (clock shielding) – SWITCHING NOISE

12

EMI v1.0 Energy Efficiency vs Speed

EMI v1.0 Energy Efficiency vs Area

14