Welcome!

European Exascale Processor & Memory Node Design

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671578
3D-IC design solutions for modular integration of chiplet over silicon interposer

Pierre-Yves Martinez, Denis Dutoit
CEA-LETI
January 23rd 2018

HiPEAC workshop: Towards Exascale HPC: the ExaNoDe, ExaNeSt, EcoScale, and EuroEXA projects

Disclaimer: This presentation does not represent the opinion of the EC and the EC is not responsible for any use that might be made of information appearing herein.
Outline

- Advanced Packaging Integration:
 - Technologies
 - European project landscape
 - High Performance Computing case
 - ExaNoDe Advanced Packaging Technologies

- 3D Integrated Circuit Design Solutions:
 - ExaNoDe prototype assembly hierarchy
 - Chiplet Architecture & Design
 - Chiplet over Interposer Integration

- Multi-Chip-Module Challenges and Solutions:
 - Placement and Routing
 - Assembly Process

- Conclusion
Advanced Packaging Integration
Advanced Packaging Integration: Technologies

Multi-Chip-Module
- Interconnect density: 100µm x 100µm
- AMD EPYC 7260, 4-chiplet chip

System-in-Package (SiP)

Die stacking
- Interconnect density: 10µm x 10µm
- Micron High-Bandwidth-Memory

3D Integrated-Circuit (3D IC)

2.5D Interposer based
- Interconnect density: 10µm x 10µm
- AMD Fiji GPU
Advanced Packaging among European HPC Projects

2011-2016

- MCM reference design
- MICRO-SERVER
 - Multi-Chip-Module

Combined architecture / silicon interposer exploration

HPC Silicon Interposer

2015-2018

- HPC
 - Multi-Chip-Module
 - Silicon Interposer

Integrated prototype

Advanced packaging ready for next generation HPC systems

2018...

31.01.2018
Copyright © 2018 Members of the ExaNoDe Consortium
Advanced Packaging Technologies for HPC

PROCESSOR

Die-on-Substrate

- Large die: complex design, high NRE, low yield, high cost

ACCELERATOR

Die-on-Interposer-on-Substrate

- Heterogeneity only possible at board level: high power consumption
Advanced Packaging Technologies for HPC

NEXT GENERATION HETEROGENEOUS COMPUTING

Advanced packaging technologies for low power, low cost and modularity

PROCESSOR

Die-on-Substrate

ACCELERATOR

Die-on-Interposer-on-Substrate
ExaNoDe Advanced Packaging Technologies

PROCESSOR

Die-on-Substrate

ACCELERATOR

Die-on-Interposer-on-Substrate

HETEROGENEOUS AND MODULAR COMPUTING

- Die-on-Substrate
- Large die partitioning: chiplet design
- Chiplet-to-chiplet and chiplet-to-interposer high speed links
- Chiplet-on-Interposer-on-Substrate

ExaNoDe MCM

Bare die

Chiplet

Interposer

IO I/F

Bare die

Copyright © 2018 Members of the ExaNoDe Consortium
3D Integrated Circuit Design Solutions
Chiplet Architecture

- Programmable Traffic generator (CEA)
- Ultra Short Reach chiplet-to-chiplet fast serial link (UOM)
 - Mapping over the 160 passive link available
- Convolutional Neural Networks (ETHZ)
- Bridge VCI --> AXI (CEA/ETHZ)
- DSPIN Network on chip and 3D plug (CEA)
 - Communication between clusters and inter-chiplet
- FLL
Chiplet Design

- 28FDSOI STM process
- Tape out on June 7th, 2017
- Timing closed over the full window of the process variation defined by the foundry
- Wafers back from fab end of 2017
 - Ready for 3D bump growth steps

- Convolutional Neural Networks (ETHZ)
- Programmable Traffic generator (CEA)
- Ultra Short Reach chiplet to chiplet fast serial link (UOM)
3D Integrated Circuit:
- Chiplet design with communication infrastructure and HW accelerators.
- Interposer design with FPGA interface.
- Chiplet to chiplet high speed serial link communication
- Multi-level global interconnect
- Embedded DC-DC on the interposer for chiplet supply voltage adjustment
Multi-Chip-Module Challenges and Solutions
MCM components positioning and routing

FPGA orientation and bank assignations optimized to reduce LVDS crossings and allow SODIMM connection (board level)
Multi-Chip-Module Challenges and Solutions

- MCM assembly process

Stage 1
- Decoupling capacitors, FPGAs and interposer placement (pick & place, flip chip)
- Mass reflow

Stage 2
- Chiplets stacking on interposer by thermocompression bonding

Stage 3
- Copper lid placement
- BGA placement and reflow
Conclusion

- **Advanced Packaging:**
 - a key enabling technology for high performance and power efficient processors and accelerators.

- **ExaNoDe main innovations related to advanced packaging:**
 - 3D Integrated Circuit design solutions,
 - Ultra Short Reach chiplet-to-chiplet fast serial link,
 - 3D plug for chiplet-to-interposer wide data link,
 - Chiplet-on-Interposer-on-MCM assembly process.

- **ExaNoDe advanced packaging enables:**
 - modularity thanks to chiplet design solutions,
 - power efficient heterogeneity with Chiplet-on-Interposer-on-MCM assembly process.

Acknowledgements:

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 671578

Part of this work was funded thanks to the French national program “Programme d’Investissements d’Avenir, IRT Nanoelec” ANR-10-AIRT-05
Thank you!

European Exascale Processor & Memory Node Design

www.exanode.eu