
Use-cases for Remote Memory
in the Unimem Architecture

C o m pute r A rc h i te c t ure a n d V L S I Sy st e ms (C A RV) L a b o rato r y
F O RT H – I C S

Nikolaos Kallimanis Manolis Marazakis Emmanouil Skordalakis

Unimem Architecture

2

Communication mechanisms of
the Unimem architecture:

1. Load/Store instructions across
remote nodes.

2. Every page of physical memory is
cacheable only in a single node.

3. Efficiently copying large amounts
of memory from/to remote nodes.

4. Send and receive of small atomic
messages in a low latency manner.

Unimem

Interconnect

Node 1 Node 2

Node 3 Node 4

3

How to exercise
the Unimem

remote memory?

Unimem’s APIs

4

Apps
(Unimem

optimized)

Apps
(unmodified)

Apps
(unmodified)

Runtimes
(Unimem
oriented)

Global Shared
Address Space

Remote Memory
SWAP

Apps
(unmodified)

System Software - Unimem testbed
(drivers, etc.)

HW - Unimem testbed
(RDMA, virtual mailbox, virtual packetizer, remote memory access)

Unimem Sockets
(modified libc)

Unimem Interfaces
(Remote DMA, etc.)

Exercising Remote Memory

GSAS - Global Shared Address Space

1. Global Shared Address Space across
system’s remote nodes.

2. It is mostly implemented based on
mechanisms for sending/receiving
small atomic messages.

3. API resembles to shared memory
communication.

4. Applications can use this API for
synchronization and for using
remote memory.

5. Data are cached in the node that
reside on → cacheable at single
node.

KRAM - Remote Memory SWAP

1. It uses remote node's (unused)
memory to create a SWAP.

2. It uses the Xilinx CDMA engine, or
memcpy for transferring data.

3. Transparent to user application
(unmodified apps).

4. Extends the memory that
applications can use.

5. Data are cached in the local
processor that application runs →
cacheable at single node.

5

In both cases data are cached at a single node (Unimem property).

No complex hw-coherence protocols.

Flexibility.

Overview of the GSAS environment

GSAS Address Space

Node 1

0x0001-0000-0000-0000

0x0002-0000-0000-0000

0xFFFF-0000-0000-0000

0x0003-0000-0000-0000 …

Node 2

Node N

6

o64-bit address space.

oThe first 16 bits contain
the routing information.
 node-id.

oThe remaining 48 bits
indexing the memory of
each node.

node-id (16 bits)

Overview of the GSAS environment

7

oThere is an atomic service at
each node that serves
requests.

oAtomic service is running on
core 0 on every node of the
system.

oApps and the atomic service
communicate through small
atomic messages with low
latency.

oThere is a user-space library
that handles the requests on
the issuer side.

Unimem

Interconnect

Node 2

Packetizer Mailbox

Node 1

Packetizer Mailbox

Node 3

Packetizer Mailbox

Node 4

Packetizer Mailbox

Atomic Service

Overview of the GSAS environment

An application that uses the
GSAS API is able to:
o Allocation of memory in any

remote node.

o Spawning a new process on
any remote node.

o Executing atomic operations
(i.e., CAS, FAD, SWAP, etc.) on
any remote memory location.

Low latency primitives (current
prototype).
o ≈ 2.0 μsec for a local issued

atomic instruction.
o ≈ 3.9 μsec for a remote issued

atomic instruction.

GSAS Addresses

0x0001-0000-0000-0000

0x0002-0000-0000-0000

0xFFFF-0000-0000-0000

0x0003-0000-0000-0000

App

8

Performance/DHT on GSAS
GSAS use case example:
oAn in-memory concurrent

Distributed Hash Table (DHT) is
based on GSAS.

o It supports:
DhtPut→ Store pairs of 〈𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒〉

items in GSAS address space.

DhtGet→ Retrieves the value that
corresponds to some 𝑘𝑒𝑦.

o Experiments on Unimem testbed
(8 Trenz nodes):
‒ Zynq MP Ultrascale+ SoC.

‒ 4 Arm A53 cores & 2 GB of local DDR4.

‒ Each thread executes pairs of DhtPut &
DhtGet operations.

‒ Throughput of operations/sec is
measured for different # of nodes.

‒ Experiments were performed for 1, 2
and 3 threads per node.

9

0

50000

100000

150000

200000

1 2 3 4 5 6 7 8

Th
ro

u
gh

p
u

t
o

p
e

ra
ti

o
n

s/
se

c

nodes

1 Thread

2 Threads

3 Threads

KRAM – Concept/Architecture

10

 250 MB are dedicated for the
remote allocator service.

 The maximum amount of local
memory that local applications
can use is 1.75 GB.

 For more memory, KRAM
creates a swap device to extend
the memory.

𝑛0

𝑛1

Remote
allocator

KRAM
Kram
tool

Remote
allocator

KRAM
Kram
tool

𝑛1
attached

unattached
1.75 GB

1 GB

2 GB

𝑛0
attached

unattached
1.75 GB

0.8 GB

2 GB

Unused main memory
Used main memory

Unused reserved memory
Used reserved memory

KRAM -Requesting More Memory

11

1. User requests a swap device of
a specific size.

2. KRAM requests memory from
the local remote allocator
service.

3. The remote allocator
communicates with neighbor
allocators for more memory.

Remote
allocator

KRAM
Kram
tool

𝑛0

𝑛1

Remote
allocator

KRAM
Kram
tool

𝑛1
attached

unattached
1.75 GB

1 GB

2 GB

𝑛0
attached

unattached
1.75 GB

0.8 GB

2 GB

Unused main memory
Used main memory

Unused reserved memory
Used reserved memory

KRAM – Allocating Remote Memory

12

4. The remote allocator of some
neighbor sends the physical
address of the free remote
memory.

5. The remote allocator sends
the address to KRAM.

6. KRAM creates a swap device.

Remote
allocator

KRAM
Kram
tool

𝑛0

𝑛1

Remote
allocator

KRAM
Kram
tool

𝑛1
attached

unattached
1.75 GB

1 GB

2 GB

𝑛0
attached

unattached
1.75 GB

0.8 GB

2 GB

Unused main memory
Used main memory

Unused reserved memory
Used reserved memory

KRAM – Swapping

13

Now, Applications on node 𝑛0 are
able to use:

- 1.75GB from local memory

- Some memory from remotes

Remote
allocator

KRAM
Kram
tool

Remote
allocator

KRAM
Kram
tool

𝑛1
attached

unattached

1.75 GB

1 GB

2 GB

𝑛0 attached

𝑛0

𝑛1

𝑛0
attached

unattached
1.75 GB

0.8 GB

2 GB

Unused main memory
Used main memory

Unused reserved memory
Used reserved memory

KRAM – Stream Performance

14

 3 nodes with specifications:
• 2 GB RAM (1.75 GB main, 0.25GB reserved)
• Zynq MP Ultrascale+ SoC

 The Stream benchmark which calculates MB/s
using the Copy, Scale, Add and Triad functions.

 6 runs were performed, with dma mode
and with memcpy mode

1. Local memory only.
2. Remote memory of 48 MB.
3. Remote memory of 96 MB.
4. Remote memory of 144 MB.

1.6GB local 1.6GB local
48MB swap

1.6GB local
96MB swap

1.6GB local
144MB swap

1.6GB local 1.6GB local
48MB swap

1.6GB local
96MB swap

1.6GB local
144MB swap

memcpy memcpy memcpy memcpy dma dma dma dma

0

500

1000

1500

2000

2500

3000

3500

4000

4500

M
B

/s

Copy Scale Add Triad

Thank You

15

