
Project No. 671578 ExaNoDe Deliverable D3.1 Page 1 of 27

D3.1

Runtime systems (OmpSs, OpenStream) and

communication libraries (GPI, MPI):

Analysis of the hardware system characteristics and

design of a preliminary software implementation

Workpackage: WP3 Enablement of Software Compute Node

Author(s): Valeria Bartsch, Carsten Lojewski FHG

 Antoniu Pop UOM

 Vishal Mehta, Paul Carpenter BSC

 Andrea Bartolini ETHZ

Authorized by Paul Carpenter BSC

Reviewer Loic Cudennec CEA

Reviewer Luca Benini ETHZ

Reviewer David Bull ARM

Dissemination

Level
Public (PU)

Date Author Comments Version Status

2016-08-04 Paul Carpenter Template draft to contributors V0.0 Draft

2016-10-26 Paul Carpenter First complete draft V0.9 Draft

2016-10-31 Paul Carpenter Incorporated internal review

feedback for submission to

European Commission

V1.0 Final

2017-03-14 Andrea Bartolini Fixed typo in Formula (3e) V1.1 Final

Project No. 671578 ExaNoDe Deliverable D3.1 Page 2 of 27

Executive Summary
In this deliverable, we describe the runtime systems (OmpSs and OpenStream) and

communication libraries (GPI and MPI) being developed in the ExaNoDe project. These

runtime systems and libraries will provide standard and portable programming interfaces so

that an application can take advantage of the unique system characteristics of the ExaNoDe

prototype without it having to be ported to the specific Unimem APIs defined in D3.6 [2].

OmpSs and OpenStream are extensions of OpenMP with new directives for offloading tasks.

OmpSs uses directionality clauses on tasks and address-based tracking of data dependencies

in the runtime system, and it supports heterogeneous devices such as GPUs and FPGAs.

OpenStream has explicit dependencies in the source program marked using streams. Together,

OmpSs and OpenStream explore two different trade-offs relating to performance and

overheads vs. ease of programming. Both programming environments are being extended to

leverage the Unimem architecture, with specific optimizations in the compiler (OpenStream)

and runtime system (OmpSs and OpenStream).

GPI is an open-source communication library that implements the GASPI standard PGAS

API. It provides a portable and lightweight API that leverages remote completion and one-

sided RDMA-driven communication, both being efficiently supported by the Unimem

architecture. As such, GPI is an appropriate communication library to benefit from and

evaluate the Unimem architecture. MPI is the standard message-passing API supported by all

serious HPC systems and employed by the vast majority of scientific applications. Despite its

importance, the development of a Unimem-optimized MPI library has proceeded slowly in the

first year of the ExaNoDe project. For this reason, we have transferred this activity from

CEA to BSC in the project amendment.

Finally, this deliverable describes other runtime support, specifically regarding thermal and

power management and runtime libraries for performance-critical primitives. These

technologies will be made available and potentially integrated into the optimized

implementations of GPI, OmpSs, OpenStream and MPI.

In summary, this deliverable provides the design of a preliminary software implementation for

each of the runtime systems and libraries. Since the precise hardware characteristics of the

final prototype are not yet known, preliminary design has proceeded based on the general

characteristics of the Unimem architecture. Work is ongoing, and will be described further in

D3.2, “Runtime systems (OmpSs, OpenStream) and communication libraries (GPI, MPI):

Advanced implementation customized for ExaNoDe architecture, interconnect and operating

system,” to be issued in M24 of the project.

Project No. 671578 ExaNoDe Deliverable D3.1 Page 3 of 27

Table of Contents

1 Introduction .. 7
2 Runtime systems .. 9

2.1 OmpSs ... 9
2.1.1 Introduction to OmpSs ... 9
2.1.2 OmpSs on distributed memory clusters ... 9
2.1.3 Design of a preliminary software implementation ... 10
2.1.4 Suitable ExaNode Mini-apps ... 12

2.2 OpenStream ... 13
2.2.1 Introduction to OpenStream ... 13
2.2.2 Exploiting Unimem in OpenStream ... 13
2.2.3 Design of preliminary software implementation .. 14
2.2.4 Suitable ExaNode Mini-apps ... 14

3 Communication libraries .. 15
3.1 GPI .. 15

3.1.1 Introduction to GPI ... 15
3.1.2 Exploiting Unimem in GPI .. 16
3.1.3 Design of preliminary software implementation .. 16
3.1.4 Suitable ExaNode Mini-apps ... 17

3.2 Message Passing Interface (MPI) .. 17
3.2.1 State of MPI port .. 17
3.2.2 MPI implementation: OpenMPI vs. MPICH.. 18
3.2.3 Version of MPI specification ... 18
3.2.4 Other technical issues ... 18

3.3 Suitable ExaNoDe Mini-apps .. 18
4 Other runtime support .. 19

4.1 Power and thermal control .. 19
4.1.1 Introduction .. 19
4.1.2 Design of preliminary software implementation .. 19
4.1.3 MPI runtime and workload characterization .. 21
4.1.4 HPC Optimal Thermal Control .. 22
4.1.5 The First Step Problem (FSP) .. 23
4.1.6 The i-th Step Problem (ISP) ... 24

4.2 Parallel runtime support .. 25
4.2.1 Introduction .. 25
4.2.2 Design of preliminary software implementation .. 25

5 Concluding Remarks .. 26
6 References and Applicable Documents .. 27

Project No. 671578 ExaNoDe Deliverable D3.1 Page 4 of 27

Table of Figures

Figure 1: OmpSs toolflow: Mercurium source-to-source compiler and Nanos++ runtime 9
Figure 2: Unimem support layers in OmpSs runtime .. 10
Figure 3: Layers in GASNet communication library ... 11
Figure 4: Active Message support in Unimem ... 12
Figure 5: OpenStream task communication through private buffers 14
Figure 6: GPI Building blocks for ExaNoDe architecture support .. 16
Figure 7: Core and Package C-States and matrix showing valid and invalid combinations 20
Figure 8: Operation of Thermal-aware Task Mapper and Controller 23

Project No. 671578 ExaNoDe Deliverable D3.1 Page 5 of 27

Table of Tables

Table 1: Comparison of runtime systems and communication libraries 8
Table 2: Thermal Model ... 20
Table 3: Power Model active power .. 21
Table 4: Power Model idle power .. 21
Table 5: Quantum ESPRESSO - Energy.. 22

Project No. 671578 ExaNoDe Deliverable D3.1 Page 6 of 27

List of abbreviations

Term Definition

API Application Programmer Interface

BW (MPI) Busy Waiting MPI

CPU Central Processing Unit

DoA Description of the Action

DSA Dynamic Single Assignment

DVFS Dynamic Voltage and Frequency Scaling

EAW Energy-Aware MPI Wrapper

ECED Edge and Coherence-Enhancing Anisotropic Diffusion filter

FFT Fast Fourier Transform

FIFO First In First Out

FPGA Field Programmable Gate Array

FSP First Step Problem

GAS Global Address Space

GASNet Global Address Space Networking

GASPI Global Address Space Programming Interface

GPL GNU General Public License

GPU Graphics Processing Unit

GSAS Global Shared Address Space

HLS High-Level Synthesis

IB (MPI) Interrupt-based MPI

ILP Integer Linear Programming

ISP i-th Step Problem

MCTP (Fraunhofer’s) Multicore Thread Package

MPI Message Passing Interface

MPSD / MPMD Multiple Program Single/Multiple Data

NUMA Non-Uniform Memory Access

OS Operating System

OTC Optimal Thermal Controller

PGAS Partitioned Global Address Space

PoC Proof of Concept (prototype)

RDMA Remote DMA (Direct Memory Access)

RTM Reverse Time Migration

SPSD / SPMD Single Program Single/Multiple Data

SMP Symmetric Multiprocessor

TDP Thermal Design Power

TMC Thermal-aware Task Mapper and Controller

UDP User Datagram Protocol

Project No. 671578 ExaNoDe Deliverable D3.1 Page 7 of 27

1 Introduction
The ExaNoDe project is developing a unique HPC system architecture based on the Unimem

architecture, which is also the basis for the related projects EUROSERVER [3] and

ExaNeSt [4]. A system that implements Unimem consists of a number of computational nodes

connected through a custom network. Each node typically contains multiple processing cores,

which communicate amongst themselves using coherent shared memory as provided by the

hardware. Distinct nodes communicate using Unimem’s global address space (GAS), which

provides non-coherent load–store and RDMA access to any other remote node. The Unimem

hardware architecture is exposed to user space via the Global Shared Address Space (GSAS),

user-space RDMA, mailbox and remote allocator APIs defined in D3.6 [2].

For easier programming, the application developers will be provided with standard and

portable programming interfaces through the runtime systems and communication libraries

described in this deliverable. This approach allows applications to take advantage of the

characteristics of the ExaNoDe system architecture and Unimem architecture, without them

having to be ported to a specific API and without the application developer needing to

understand in detail the associated performance tradeoffs.

The runtime systems and communication libraries are summarised in Table 1. OmpSs is a

task-based programming model that extends OpenMP with new directives for asynchronous

parallelism and heterogeneous devices such as GPUs and FPGAs. The OmpSs environment is

built using the Mercurium source-to-source compiler and Nanos++ runtime system. Nanos++

supports SMPs, GPUs, FPGAs and clusters. In ExaNoDe, the cluster implementation of

Nanos++ is being leveraged as the basis for efficient runtime support for offloading tasks

across nodes on the Unimem architecture, with automatic management of data transfers and

data locality. OmpSs already supports offloading of tasks to FPGAs, using High-Level

Synthesis (HLS), and it is being ported to the Xilinx UltraScale+ FPGA in the AXIOM

Project. This FPGA support will be leveraged and evaluated on the ExaNoDe Proof of

Concept (PoC).

OpenStream is a task-based data-flow programming model also implemented as an extension

to OpenMP, and designed for efficient and scalable data-driven execution. Whereas OmpSs

uses directionality clauses on tasks and address-based tracking of data dependencies in the

runtime system, OpenStream has explicit dependencies in the source program marked using

streams. Compile-time transformations map each task’s memory accesses to private input and

output buffers. The OpenStream runtime system controls memory allocation, task placement

and RDMA memory transfers between tasks.

GPI is an open-source communication library that implements the GASPI standard PGAS

API. It provides a portable and lightweight API that leverages remote completion and one-

sided RDMA-driven communication, both being efficiently supported by the Unimem

architecture. As such, GPI is an appropriate communication library to benefit from and

evaluate the Unimem architecture.

MPI is the standard message-passing API supported by all serious HPC systems and

employed by the vast majority of scientific applications. Efficient support for MPI is

mandatory for any HPC system or prototype, and MPI support is an important output from

ExaNoDe WP3 that is needed by the ExaNeSt project. Specifically, the scientific applications

in ExaNeSt will require an efficient implementation of MPI. As described in Section 3.2, the

development of MPI has proceeded slowly in the first year of the ExaNoDe project. For this

reason, we have responded by transferring this activity from CEA to BSC in the project

amendment.

Project No. 671578 ExaNoDe Deliverable D3.1 Page 8 of 27

Finally, this deliverable describes other runtime support, specifically regarding thermal and

power management and runtime libraries for performance-critical primitives. These

technologies will be made available and potentially integrated into the optimized

implementations of GPI, OmpSs, OpenStream and MPI.

The runtime systems and communication libraries are being prototyped and developed using

(a) remote access to the multi-board prototype hosted at FORTH in Crete, which provides

functional verification on real hardware, and (b) software emulation of the UNIMEM APIs

using a software layer provided by FORTH and UOM. The latter provides the ability to

perform substantial development work on a local machine.

The runtime systems and communication library will be tested and evaluated using the mini-

applications from WP2 (from D2.1 [1]), as indicated in Table 1.

Table 1: Comparison of runtime systems and communication libraries

 MPI GPI-2 OmpSs (clusters) OpenStream

Programming

model

Message

passing

PGAS Tasks with argument

directionality

(input/output)

Tasks with explicit

dependencies specified

using streams

Data visibility Local to MPI

process
Global Global Global

Mapping work to

nodes

Manual Manual Runtime system Runtime system

Language type API API Language extension

(Pragmas)

Language extension

(Pragmas)

Execution style MPMD MPMD SPSD / SPMD SPSD / SPMD

Inter-node

communication

Explicit

(message

passing)

Explicit

(one-sided

asynchronous)

Implicit

(runtime system based

on argument

directionality)

Implicit

(runtime system based on

streams)

Work scheduling Manual Manual Runtime system Runtime system

Use of

heterogeneity

Explicit Explicit Automatic

(runtime system)

Explicit?

Base language(s) C, C++,

FORTRAN

C, FORTRAN C, FORTRAN, CUDA C

Started year 1991 2006 2002 (GridSs, OpenMP

influence)

2011

Licence TBD GPL GPL GPL

Anticipated

method to exploit

Unimem

Zero-copy

message

passing

Memory segments and

one-sided

communications using

Unimem

Cluster implementation

using Unimem hardware

(with single-copy data

transfers)

Unimem: one-sided

communication with zero

or one copy, depending on

dynamic task placement

decisions

WP2 Mini-app All GPI test suite, separate

stencil kernel

MiniFE HydroC, MiniFE and

NEST

Project No. 671578 ExaNoDe Deliverable D3.1 Page 9 of 27

2 Runtime systems

2.1 OmpSs

This section was contributed by BSC.

2.1.1 Introduction to OmpSs

The OmpSs programming model aims to provide productive support for developing parallel

applications on heterogeneous systems, with a focus on ease of use and performance. OmpSs

is a combination of principles from OpenMP and StarSs [13]. It extends OpenMP with

directives for task-based asynchronous parallelism supporting address-based data

dependencies. It also has support for heterogeneous architectures, including multiple address

spaces and multiple versions of the same task to target different types of device (e.g.

processor cores, GPUs, FPGAs and/or Intel Xeon Phis).

The OmpSs environment, shown in Figure 1, is based on the Mercurium source-to-source

compiler and Nanos++ runtime system. Mercurium translates the OmpSs directives (pragmas)

into calls to the Nanos++ runtime API that create new tasks, wait on data, etc. The translated

program is then compiled with the native C/C++/Fortran and CUDA/OpenCL compilers, and

linked with the appropriate runtime libraries, including the Nanos++ runtime system. At run

time, Nanos++ tracks dependencies to build a dynamic dependency graph, and it schedules

ready tasks onto the available devices, taking into account data locality, and automatically

performing data transfers into and out of software-managed data caches.

Figure 1: OmpSs toolflow: Mercurium source-to-source compiler and Nanos++ runtime

2.1.2 OmpSs on distributed memory clusters

OmpSs supports distributed memory clusters using the cluster version of Nanos++, which

provides the shared memory abstraction to the user. Nanos++ for Clusters is implemented

using a PGAS (Partitioned Global Address Space) API known as GASNet (Global Address

Space Networking). GASNet is a language-independent low-level networking layer intended

for implementing parallel global address space SPMD languages.

The GASNet design is partitioned into two layers to simplify porting without sacrificing

performance: the lower level is a narrow but general interface called the GASNet Core API,

whose design is heavily influenced by Active Messages, and which is implemented directly

Project No. 671578 ExaNoDe Deliverable D3.1 Page 10 of 27

on top of the particular network architecture. The upper level is a wider and more expressive

interface called the GASNet Extended API, which provides high-level operations such as one-

sided puts and gets and various collective operations.

The cluster version of Nanos++ uses the GASNet Core and Extended APIs as a basis for

implementing its shared memory abstraction, which allows users to execute tasks across

parallel machines. The OmpSs scheduler is configured at runtime with the resource

information. In the case of clusters, OmpSs also has to manage the user data across multiple

nodes, which is accomplished using the GASNet Core API. OmpSs uses active messaging in

order to send tasks and data to different nodes. The task dependencies are managed by the

master node, which ensures correctness of the application execution. Figure 2 shows an

overview of layers in OmpSs Cluster version.

Figure 2: Unimem support layers in OmpSs runtime

The Nanos++ runtime system uses calls to the Extended API functions of GASNet to

implement the bulk of the communication work (thereby ensuring optimal performance across

platforms). The runtime also uses the core active message interface to implement non-trivial

language-specific or compiler-specific communication operations that would be inappropriate

in a language-independent API (e.g. implementing distributed language-level locks,

distributed garbage collection, collective memory allocation, etc.). The Active Message

features of the GASNet Core API provide a powerful extensibility mechanism which allows

OmpSs runtime to implement a wide variety of specialized communication operations in

context of data, runtime objects, user arguments etc.

2.1.3 Design of a preliminary software implementation

BSC has ported GASNet to the Unimem APIs and tested it using the software emulator from

FORTH. Since the clusters version of Nanos++ uses mainly the GASNet Core API, this work

has concentrated on implementing the Core API using a combination of MPI and Unimem

RDMA.

The design of GASNet is indicated in Figure 3. Several implementations of the GASNet Core

API are available optimized for different network configurations, including general-purpose

UDP, general-purpose MPI, MPI over Gemini interconnect, InfiniBand interconnect, and

shared memory. GASNet also includes a reference network-independent implementation of

the Extended API that uses only the Core API, which means that a basic network architecture

implementation requires only an implementation of the Core API. It is possible, however, for

optimized network implementations to bypass the reference Extended API functions, by

Project No. 671578 ExaNoDe Deliverable D3.1 Page 11 of 27

providing optimized functions that improve performance using specific hardware support (e.g.

special network support for puts/gets or hardware-assisted broadcast).

Figure 3: Layers in GASNet communication library

The GASNet conduit for Unimem allows the OmpSs runtime to transparently use Unimem

features, including RDMA between nodes. In large systems, it can revert to using MPI

whenever Unimem features are not available. Since the current implementation of Nanos++

for Clusters uses only the Active Messaging support in the GASNet Core API, we have

focussed so far on Active Messages, and other basic functionality (e.g. initialization

functions). GASNet consists of three kinds of Active Messages i.e. short, medium and long.

They also have their corresponding reply functions having similar syntax. A short description

is given below:

Short Active Message

These messages carry only a few integer arguments (up to gasnet_AMMaxArgs())

handler prototype:

 void handler(gasnet_token_t token,
 gasnet_handlerarg_t arg0, ... gasnet_handlerarg_t argM-1);

Medium Active Message

In addition to integer arguments, these messages can can carry an opaque data payload (up to

gasnet_AMMaxMedium() bytes in length), that will be made available to the handler when it is run on the

remote node.

handler prototype:

 void handler(gasnet_token_t token,
 void *buf, size_t nbytes,
 gasnet_handlerarg_t arg0, ... gasnet_handlerarg_t argM-1);

Long Active Message

In addition to integer arguments, these messages can carry an opaque data payload (up to

gasnet_AMMaxLong() bytes in length) which is destined for a particular predetermined address in the

segment of the remote node (often implemented using RDMA hardware assistance)

handler prototype:

 void handler(gasnet_token_t token,
 void *buf, size_t nbytes,
 gasnet_handlerarg_t arg0, ... gasnet_handlerarg_t argM-1);

Project No. 671578 ExaNoDe Deliverable D3.1 Page 12 of 27

Figure 4: Active Message support in Unimem

Active messages involve transfers of the arguments and payload to the destination node and

execution of the handler in the destination node. This is done in clusters using the underlying

MPI conduit. When Unimem is available between two nodes, the GASNet active message

calls are translated into GASNet short messages, while the arguments and data payload are

managed using Unimem RDMA calls.

Figure 4 shows an implementation diagram for Active Messages for Unimem. Each call made

to Active Message in the Unimem conduit gets converted into Unimem RDMA and short

messages. When the size of the RDMA is less than the system page size, which is 4 KB in

most systems, a memory copy is used for transferring the arguments over Unimem. The

Unimem driver takes care of the memory transfers. This approach is used in case of

transferring the arguments. In the case of data payload, we use RDMA approach owing to

performance benefits.

2.1.4 Suitable ExaNode Mini-apps

For validation of Nanos++ on the Unimem architecture, we will use the MiniFE mini-app

from ExaNoDe WP2. MiniFE is a finite element mini-application that implements

computational kernels representative of implicit finite-element applications. It assembles a

sparse linear-system from the steady-state conduction equation on a brick-shaped problem

Project No. 671578 ExaNoDe Deliverable D3.1 Page 13 of 27

domain of linear 8-node hex elements. It then solves the linear-system using a simple un-

preconditioned conjugate-gradient algorithm.

The application is also scalable using MPI as well as OpenMP. As a general approach we will

be using OmpSs tasks in porting MiniFE to ExaNode architecture.

2.2 OpenStream

This section was contributed by UOM.

2.2.1 Introduction to OpenStream

OpenStream [14] is a task-parallel, data-flow programming model implemented as an

extension to OpenMP, designed for efficient and scalable data-driven execution. Arbitrary

dependence patterns can be used to exploit task, pipeline and data parallelism. Each data-flow

dependence is semantically equivalent to a communication and synchronization event within

an unbounded FIFO queue. Pragmatically, in the original shared-memory instantiation, this is

implemented by compiling dependences as accesses to task buffers dynamically allocated at

execution time: writes to streams result in writes to the buffers of the tasks consuming the

data, while read accesses to streams by consumer tasks are translated to reads from their own,

task-private buffers.

Compared to the more restrictive data-parallel and fork-join concurrency models, task-parallel

models enable improved scalability through load balancing, memory latency hiding,

mitigation of the pressure on memory bandwidth, and as a side effect, reduced power

consumption. Currently developed at UOM, OpenStream further takes advantage of the

information provided by programmers on task dependences to aggressively optimize memory

locality through dynamic task and data placement.

2.2.2 Exploiting Unimem in OpenStream

OpenStream relies on a private-by-default strategy for handling communication between

tasks, which means that despite a shared-memory view from the programmer’s perspective,

communication is more akin to message-passing than to concurrent shared-memory

communication. This is made possible by requiring programmers to provide additional

information on how data is accessed within tasks. This information is used at compile time to

generate the appropriate modifications to memory accesses to achieve Dynamic Single

Assignment (DSA). As shown in Figure 5, each task computes on data available in its input

buffers and writes data in output buffers, each belonging to a unique task reading from them.

This data-flow execution model is a perfect match for the Unimem memory model. The

privatization of data communicated between tasks is key to enabling the runtime to fully

control the locality of memory allocation and of task placement, as well as providing

transparent RDMA memory transfers between tasks.

Project No. 671578 ExaNoDe Deliverable D3.1 Page 14 of 27

Figure 5: OpenStream task communication through private buffers

Each task is associated with a set of incoming data dependences and a set of outgoing data

dependences, as illustrated by Figure 5. Each data dependence is associated with a contiguous

region of memory, the input buffer and output buffer, for incoming and outgoing

dependences, respectively. The addresses of these buffers are collected in the task’s frame,

akin to the activation frame storing a function’s arguments and local variables in the call

stack. While the frame is unique and allocated at the task’s creation time, its input and output

buffers may be placed on different NUMA nodes and allocated later in the life cycle of the

task, but no later than the beginning of the execution of the task, reading from input buffers

and writing into output buffers. Buffer placement and allocation time have a direct influence

on locality and task-data affinity.

Finally, OpenStream also relies on the inter-node Atomics provided in the Unimem memory

model to implement low-level runtime algorithms, such as dynamic load balancing, inter-

node synchronization and locality-aware scheduling and memory allocation. This is further

discussed in Section 4.2.

2.2.3 Design of preliminary software implementation

As the prototype boards have only become available with both RDMA and Atomics in M12,

we have focused our initial work on a functional implementation on top of an emulation

library for RDMA provided by FORTH and a functional emulation layer of inter-node

Atomics that we have implemented at UOM (based on the API designed by FORTH for the

Juno prototype) and made available to all WP3 partners. This initial implementation is now

functional on the emulation platform, although as discussed in Section 2.2.2, the runtime is

not yet optimized. Part of the difficulty for optimizing the implementation is that the specific

tradeoffs of the ExaNoDe architecture cannot be captured easily with either emulation layers

or Juno boards prototype. A preliminary optimization work will be conducted until we have

access to more concrete hardware.

This first multi-node implementation was possible thanks to the collaboration between

FORTH and UOM on the API and the emulation framework for RDMA and atomics.

2.2.4 Suitable ExaNode Mini-apps

OpenStream currently provides a front-end for C, but can be used with C++ with the

appropriate wrappers. For this reason, we will target the HydroC, MiniFE and NEST Mini-

apps identified in D2.1. HydroC will be the primary objective once we have validated the

OpenStream implementation using micro-benchmarks from the OpenStream suite. Although

no in-depth evaluation of the Mini-apps has been done for OpenStream, the programming

model is fully general and should be suitable for all C-based applications.

Project No. 671578 ExaNoDe Deliverable D3.1 Page 15 of 27

3 Communication libraries

3.1 GPI

This section was contributed by FHG.

3.1.1 Introduction to GPI

The Fraunhofer GPI (Global Address Space Programming Interface) open-source

communication library is an implementation of the GASPI standard [4], freely available to

application developers and researchers. GASPI stands for Global Address Space

Programming Interface, and it is a Partitioned Global Address Space (PGAS) API that aims to

provide extreme scalability, high flexibility and failure tolerance for parallel computing

environments.

GASPI aims to initiate a paradigm shift from bulk-synchronous two-sided communication

patterns towards an asynchronous communication and execution model. It leverages remote

completion and one-sided RDMA-driven communication in a Partitioned Global Address

Space. The asynchronous communication enables a perfect overlap between computation and

communication. The main design idea of GASPI is to have a lightweight API ensuring high

performance, flexibility and failure tolerance.

Traditionally GPI is used in visualization and seismic imaging applications. In the past years

GPI has been ported to several scientific applications within publicly funded projects. With

the objective of running on current Petascale systems, the Exascale-ready GPI prototype has

been run at the Extreme Scale-out Workshop in 2015 at the Leibnitz Rechenzentrum (LRZ) in

Munich, Germany. The results were presented at the XXXL workshop at the ISC15

conference and the PARCO 2015 conference. Two applications have been developed using

GPI: Reverse Time Migration (RTM), a seismic imaging technique and the ECED filter for

noise removal from images. Strong scaling with over 90%/70% of parallel efficiency for the

ECED filter/RTM application has been shown on the Haswell extension of the SuperMUC

cluster on 84,000/43,000 cores.

Inside nodes, parallelism is handled using threads. The GASPI API is thread-safe and allows

each thread to post requests and wait for notifications. Any threading approach (POSIX

threads, MCTP, OpenMP) is supported since it is orthogonal to the GASPI communication

model.

GPI supports interoperability with MPI in order to allow for incremental porting of

applications. GPI supports this interoperability in a so-called mixed-mode, in which the MPI

and GASPI interfaces can be mixed.

An interface allowing interoperability concerning the memory management has recently been

established in the GASPI standard. GASPI handles memory spaces in so-called segments,

which are accessible from every thread of every GASPI process. The GASPI standard has

been extended to allow the user to provide an already existing memory buffer as the memory

space of a GASPI segment. This new function will allow future applications to communicate

data from memory that is not allocated by the GASPI runtime system but provided to it (e.g.

by MPI).

Project No. 671578 ExaNoDe Deliverable D3.1 Page 16 of 27

3.1.2 Exploiting Unimem in GPI

Figure 6: GPI Building blocks for ExaNoDe architecture support

In the context of the ExaNoDe hardware, GPI will be implemented using the RDMA

primitives provided by the hardware and the interconnect. In the current design phase, the GPI

Runtime reflects the interface description as given in [9]. To simplify the porting of the GPI

Runtime, the GPI Kernel has been subdivided into Unimem dependent and Unimem

independent modules, as shown in Figure 6.

The Unimem independent modules (Runtime Environment like initialization and GPI Groups)

can be developed/ported without knowledge of the final hardware characteristics and interface

descriptions of the ExaNode/Unimem architecture. Both modules are able to run over a

secondary network maintained using TCP/IP for data exchange. This makes it possible to start

early implementations of these components within the ExaNoDe project. The final

communication interface for these modules will be RDMA over Sockets from FORTH, the

transport layer of Unimem.

Currently both modules are in the process of being ported to the aarch64 architecture.

All Unimem-dependent modules, such as pinned memory segments, global atomics (and

related memory areas), passive RDMA, collectives and one-sided reads and writes managed

by IO-queues are hard to implement without detailed knowledge of the behaviour of the

interconnect interface. Therefore an emulation library has been developed that implements

most of the current functionality as described in [9]. This emulation library allows early tests

on a standard x86_64 SMP system without the need to have real prototype hardware available

on site. In the next step each module will be ported separately to the ExaNoDe prototype

system and linked against the Unimem system libraries.

3.1.3 Design of preliminary software implementation

In close collaboration with FORTH, Fraunhofer has developed a first RDMA User level API

for Unimem suitable for all runtime systems. This first API will be extended as soon as

further requirements are needed to implement certain functionalities. After evaluating some of

the core components of the API on the ExaNoDe prototype a first mapping of the Unimem

dependent GPI modules to the user level RDMA API was found. The following chapters

describe a possible first design of GPI on top of that RDMA API.

Project No. 671578 ExaNoDe Deliverable D3.1 Page 17 of 27

3.1.3.1 GPI Segments

Currently the ExaNoDe API of GPI supports a single RDMA capable segment with a

maximum size of 256MB. GPI will relax this restriction in a sense that an application can

allocate multiple GPI Segments within the 256MB. Furthermore GPI will also allocate some

internal segments for collective operations.

3.1.3.2 GPI IO-Queues

GPI applications trigger one-sided RDMA reads and writes by placing communication tokens

into IO-Queues. The status of a single token or a group of tokens can be determined at any

time by calling a wait operation on a given queue. The user-level API currently returns a

unique communication identifier for each communication call without using communication

queues. To implement different IO-Queues on top of that functionality, a map will be

assigned over all IO-Queues that combines communication identifiers and queue ids. To allow

concurrent threads to access the IO-Queues at the same time, a global spinlock is used to

protect all involved API calls.

3.1.3.3 GPI Collectives

In a first design GPI Collectives can be implemented by using internal GPI Segments and IO-

Queues as described in Sections 3.1.3.1 and 3.1.3.2.

3.1.3.4 GPI Global Atomics

Global Atomics can be built in a first instance by using directly the interface of the user-level

RDMA API. However, all current available atomics are blocking and cannot be overlapped

with computations. To be also scalable at large-scale a more efficient interface for global

atomics has to be found and implemented as part of the user level API in a future version.

3.1.3.5 GPI Passive RDMA

Passive RDMA operations cannot be fully offloaded. They need some support from the

Operating System so that passive waiting (sleeping) processes/threads can be informed when

matching communication data is available. A first implementation can be built on top of the

Unimem mailbox approach, where a process/thread can use system calls like select, poll or

epoll to get signalled when an event occurs on the corresponding mailbox file descriptor.

A couple of programs have been developed to test this first design of each individual module

on the ExaNoDe prototype or by using the emulation library.

3.1.4 Suitable ExaNode Mini-apps

Beside the GPI test suite a stencil kernel application will be implemented to show off the

strength of overlapped and offloaded data communication on ExaNoDe/Unimem.

3.2 Message Passing Interface (MPI)

This section was contributed by BSC.

3.2.1 State of MPI port

In the original Description of Action (DoA), the optimized port was to have been designed

and implemented by CEA. Unfortunately CEA have been unable to dedicate sufficient

resources to this activity, so at M12 the project took the decision to transfer this activity to

BSC in the amendment, with a realistic (increased) budget from 9 to 24 PMs. With the new

plan, a preliminary implementation is expected in M24, with the fully optimized

implementation delivered by M36. This is therefore the same schedule as in the original DoA,

Project No. 671578 ExaNoDe Deliverable D3.1 Page 18 of 27

but due to the change in partner there has been negligible progress as of M12 to report in this

deliverable.

The implementation of MPI is crucial to the viability of ExaNoDe + ExaNeSt + ECOSCALE,

and is especially important to the application partners in WP2 of ExaNeSt. For this reason,

the requirements for the optimized MPI port were discussed in detail in the ExaNode +

ExaNeSt + ECOSCALE Workshop, 20 September 2016 in Trieste. The conclusions were as

follows.

3.2.2 MPI implementation: OpenMPI vs. MPICH

BSC has expertise in MPICH and contacts with the development team at Argonne, so it

proposes to optimize the MPICH implementation of MPI. This would be the generic MPICH

codebase rather than an optimized implementation such as MVAMPICH. The version of MPI

was discussed in detail in the Trieste Workshop, and although the application partners of

ExaNeSt are currently using OpenMPI, they are willing to evaluate MPICH.

3.2.3 Version of MPI specification

The application codes in ExaNeSt are generally MPI-2 or MPI-1.2, with certain cosmology

codes moving to MPI-3, due to the better one-sided puts and gets for RDMA, sparse

collectives and non-blocking collectives. There is a considerable diversity among codes in

terms of their use of point-to-point vs. collective operations and blocking vs. non-blocking.

For this reason, ongoing collaboration is required between the ExaNoDe MPI implementation

effort and ExaNeSt. It will certainly not be sufficient to develop a “basic” implementation

with optimized implementations of only the most basic MPI-1 calls.

3.2.4 Other technical issues

The partners in ExaNeSt have agreed to collect performance data from their applications in

order to help with performance tuning, such as eager vs. rendezvous threshold, fan-in / fan-out

factor and choice of fast paths in the implementation.

3.3 Suitable ExaNoDe Mini-apps

All ExaNoDe mini-apps considered in D2.2 (Report on the ExaNoDe mini-applications) [1]

are either implemented in MPI or they have MPI versions: Abinit, BQCD, HydroC,

KKRnano, MiniFE and NEST. The four chosen applications (BQCD, HydroC, KKRnano and

MiniFE) are therefore suitable for evaluation of the MPI port. Moreover, the MPI port will be

developed in consultation with the application partners of ExaNeSt and will be made available

to them for implementation and performance evaluation using production scientific

applications, in particular those from INAF and INFN.

Project No. 671578 ExaNoDe Deliverable D3.1 Page 19 of 27

4 Other runtime support
This section describes the advances in thermal and power management and runtime libraries

for performance-critical primitives (e.g. scalable synchronization primitives and work-stealing

load balancing). The intention is that these technologies will be made available and

potentially integrated into the optimized ports of GPI, OmpSs, OpenStream and MPI.

4.1 Power and thermal control

This section was contributed by ETHZ.

In this section we discuss an extension of the runtime of the programming models for thermal

and power control. This deliverable reports an assessment of the thermal effects visible in

high performance computing processors, the available power control knobs, and their

interactions with a programming model. We choose MPI for our analysis. We then propose a

thermal controller formulation which is suitable for accounting workload properties as well as

workload unbalance. In future works we will evaluate the achievable gain and the design

trade-offs.

4.1.1 Introduction

Chiplet integration coupled with the high computational power and heterogeneous resources

which characterize the ExaNoDe architecture will challenge conventional thermal and power

management strategies. Variations of the application load will translate into highly variable

power consumption and generate temperature hotspots within the severely thermally

constrained, vertically stacked Chiplet environment. A holistic thermal and power

management approach is therefore crucial. The approach should combine the fast reaction

times, which are typical of hardware control loops, with the global view from software

management.

4.1.2 Design of preliminary software implementation

Within this task ETHZ is exploring and designing software-based distributed power and

thermal controllers embedded in the runtime libraries which will adapt the operating

conditions according to application demand and silicon thermal evolution, taking into account

variability and heterogeneity in both workloads and hardware. The controllers will leverage

hardware sensors and be aware of the existing hardware control loops to maximize precision

and minimize reaction time.

We use as a proxy to evaluate these policies a state-of-the-art processor used in several

supercomputer installations.

4.1.2.1 Power and Thermal Management

The power management states of computing elements are divided into sub-groups. The

P-States include dynamic voltage and frequency (DVFS) operating points that target reduction

of active power. C-States instead target the reduction of idle power. Both P-States and

C-States are numbered from 0 to n, where a higher number means greater savings in power.

However, in the case of C-States this means also longer transitions in and out of the state. In

recent Intel architectures P-States can be selected independently for each core [10]. C-States

are instead defined independently for cores and the “uncore” (package) region. The P-States

are handled by the Linux OS by means of software frequency governors. C-States are

triggered from CPU’s firmware, but the OS can provide hints on the appropriate C-State to

the hardware through OS idle governors. Figure 7 shows the different architecture impacts

and dependencies for the different cores and package C-States.

Project No. 671578 ExaNoDe Deliverable D3.1 Page 20 of 27

We will use this analysis in Task 3.3 to evaluate the design trade-offs as well as to quantify

the achievable energy-saving gains.

Green: valid configuration for Core and Package C-States

Red: invalid configuration

Figure 7: Core and Package C-States and matrix showing valid and invalid combinations

We used a high performance computing node equipped with two Intel Haswell E5-2630 v3

CPUs, each with eight cores and 2.4 GHz nominal clock speed and 130 W Thermal Design

Power (TDP) [11]. The node runs the SMP CentOS Linux distribution version 7.0.

4.1.2.2 Thermal Model

To understand the thermal properties of the node we have executed three main stress tests, on

which we have:

(i) Kept the system in idle and measured the power and each core temperature after ten

minutes,

(ii) Executed Robert Redelmeier’s cpuburn power virus,1 in sequence on each core of

each socket in the node, leaving the remaining cores idle. We maintained a constant

workload for ten minutes and measured the power consumption and temperature. This

test was used to extract the maximum gradient between cores.

(iii) Executed the power virus for ten minutes on all the cores e simultaneously and we

measured the temperature and the power consumption.

In all previous tests, the temperature and power values were measured by periodically reading

the machine specific registers, with Turbo mode disabled. Results of our analysis are reported

in Table 2.

Table 2: Thermal Model

Condition Value

Average temperature - Idle cores 15.93 °C

Average temperature - Active cores 33.39 °C

Gradient - Idle cores 4.47 °C

Gradient - Active cores 4.79 °C

Gradient - Active core vs. idle cores 8.05 °C

Time to reach steady state 120 s

4.1.2.3 Power Model

In addition to the previous tests we have re-executed the power virus in different

configurations (number of cores executing the power virus, turbo enabled/disabled; different

1 cpuburn power virus by Robert Redelmeier: it takes advantage of the superscalar architecture to
maximize the CPU power consumption

Project No. 671578 ExaNoDe Deliverable D3.1 Page 21 of 27

frequencies) while limiting C-States.2 We maintained each configuration for ten minutes and

measured the power consumed by each CPU.

Table 3: Power Model active power

 P-State (all in C-State C0)

 Turbo Max freq. Min freq.

Puncore 17.13 W 17.13 W 12.76 W

Pcore 6.38 W 5.47 W 3.16 W

Table 4: Power Model idle power

 C-State

 C1 C2 C3

Puncore 12.76 W 11.90 W 11.84 W

Pcore 1.32 W 0.38 W 0.00 W

Table 3 and Table 4 report the power split between core and uncore regions. Table 3 shows

them for different P-States (Turbo, Max frequency and Min frequency), while in active

C-State C0. Table 4 shows the power consumption in different C-States. The power

consumption of the uncore (in C0 mode) is the same for Turbo and Max Frequency because

the uncore component is not affected by the Turbo frequencies. Scaling down the frequency

(to Min freq.), however, reduces the uncore power. In contrast, the core power consumption

scales proportionally with the frequency. Idle power can be seen in Table 4, from which we

see that C1 further reduces the power consumption by 58% compared with C0 C-State at

minimum frequency, and that C3 significantly cuts the idle power by the 71% for the core but

only marginally for the uncore. C6 instead zeroes the core power but reduces the uncore

power by just 1%. Clearly these results show that to reduce the energy consumption, the

parallel programming runtime (i.e. MPI) should prefer C1 and C3 states to save energy during

idle intervals (communication phases) instead of P-States (DVFS).

4.1.3 MPI runtime and workload characterization

We use as a workload Quantum ESPRESSO [12] to match a real life workload scientific

application to evaluate power and thermal management opportunities in Galileo. Quantum

ESPRESSO is a software suite for molecular dynamics. Its main computational kernels

include dense parallel linear algebra and 3D parallel FFT, which are both relevant for many

HPC applications. In detail, we use a Car–Parrinello (CP) simulation, which prepares an

initial configuration of a thermally disordered crystal of chemical elements by randomly

displacing the atoms from their ideal crystalline positions. This simulation consists of a

number of computation kernels that have to be executed in the correct order.

We use Intel MPI Library 5.1 for communication and the Intel ICC/IFORT 16.0 compiler.

The Intel MPI runtime tries to achieve maximum performance by adopting by default a busy-

waiting (BW MPI) policy that forces CPU polling on the network fabric controller during

communication phases and synchronization points. Alternately programmers can specify an

interrupt-based (IB MPI) communication. With IB communication, HPC applications release

the processor during communication phases, giving control to the OS, which triggers an idle

state (C-State). To isolate the impact of deep C-States from the different communication

mechanisms we also run the interrupt-based communication while limiting the deepest C-

State to C1 (IB MPI - C1 limited).

2 C-States in Intel architectures can be limited through dedicated machine-specific registers

Project No. 671578 ExaNoDe Deliverable D3.1 Page 22 of 27

Table 5: Quantum ESPRESSO - Energy

 BW MPI IB MPI IB MPI (C1 limited)

Execution Time 261.52 s 283.48 s 283.48 s

Average Power 68.19 W 62.91 W 63.22 W

Energy 17.90 J 17.83 J 18.04 J

% time in C1 0.00% 9.74% 15.80%

% time in C2 0.00% 0.66% 0.00%

% time in C3 0.00% 5.40% 0.00%

Total idleness 0.00% 15.80% 15.80%

Table 5 shows the results of Quantum ESPRESSO using the different MPI runtime

configurations. For each runtime configuration, we measure the execution time, average

power consumption and total energy for both sockets. For also calculate the idleness, which

represents the percentage of idle time, and we use hardware counters to measure the

percentage of time in each C-State: C1, C2 and C3. For Busy Waiting (BW) MPI, we can see

that, since it uses busy-waiting communication, 0% of its total time is spent in C1, C2 and C3,

and the total idleness is 0%. In contrast, Interrupt-Based (IB) MPI has a significant percentage

of idleness, which includes time in deep C-States. Due to the hardware policy, which triggers

transitions to C-States using time-outs, the specific communication phase can finish before

the deepest C-State is reached (C6). For this reason, Quantum ESPRESSO consumes 8%

lower power with IB MPI compared with BW MPI. Using IB MPI does not, however, cause a

significant energy reduction, due to a large increase in execution time. This could be caused

by (i) the C-State transition time, as well as by (ii) additional communication latencies related

to IB MPI communication. The IB MPI (C1 limited) configuration uses only the C1 idle state,

which is characterized by a negligible transition time. When comparing its execution time

with IB MPI we notice that there is no difference. This demonstrates that the slowdown in IB

MPI in comparison with BW MPI is due to the IB MPI implementation rather than C-State

transition times.

This is the first important insight of our work: the current IB MPI implementation has to be

improved in order to exploit power-saving opportunities offered by the increased agility in

C-state management of modern Intel CPUs.

4.1.4 HPC Optimal Thermal Control

In this section we present a mathematical Integer Linear Programming (ILP) formulation,

namely the Optimal Thermal Controller (OTC), which matches all the requirements of high-

performance computing systems and proactive thermal control: (i) limiting the future

temperature of all cores below a critical threshold by selecting the best operating point; (ii)

maximizing application performance (frequency of all the cores); (iii) reducing power

consumption during communication phases; (iv) providing knobs to match the computation to

communication ratio with the clock frequency.

The OTC operates at the node level and is composed of two main components: the thermal-

aware task mapper and controller and an energy-aware MPI wrapper. The thermal-aware task

mapper and controller (TMC) is triggered: (a) after the job scheduler has deployed the parallel

application on the reserved portion of the HPC machine for the job execution, and (b)

periodically with period Ts. At scheduling point (a) the TMC specifies the task-to-core

mapping, which will be maintained until the application completes. Clearly, if a critical task is

mapped to a thermally inefficient core this will more likely cause a severe degradation of the

final application performance. To abstract this requirement, we use a per-task priority level.

Higher priority means higher impact of task performance on the final application. The root

MPI task (0) is always the most critical as it acts as collector/gatherer. At scheduling point

Project No. 671578 ExaNoDe Deliverable D3.1 Page 23 of 27

(b), the TMC selects the optimal frequency to be applied to the different cores for the

following interval in order to maintain the future temperature of all cores below a maximum

limited value. The energy-aware MPI wrapper (EAW) is event-driven and it acts as a bridge

between the MPI synchronization primitives and the core's frequency selection. This

programming model interface is reactive and reduces the operating point (lower

frequency/deeper C-State) when the MPI runtime is busy waiting. When the execution flow

returns to the application code, the frequency/operating point is restored to the one selected by

the Thermal Controller.

Figure 8: Operation of Thermal-aware Task Mapper and Controller

4.1.5 The First Step Problem (FSP)

This optimization problem is solved during the initialization of the application. Its purpose is

to allocate the application tasks on the available cores and select for each of them the

maximum frequency that meets the thermal constraint Tmax in the prediction interval (PIFSP).

The prediction interval (i.e. the time horizon) plays an important role, indeed if it is too short,

the Thermal Controller (TMC) cannot predict the impact of a task allocation on long term

core temperature as its effect is hidden by the thermal capacitance, making the problem

trivial. On the contrary, if the predicted interval is too long the TMC cannot take advantage of

the thermal capacitance for sustaining short time power burst.

In addition, not all tasks have the same priority. This is matched in the optimization model

which maximizes the frequency of the highest priority task penalizing the frequencies of other

ones, the optimization problem considers K tasks to be assigned to N cores, where the number

of tasks is less than or equal to the number of cores; i.e. K < N. Each core can be configured

with a frequency in a set of M level of frequencies. The Object Function (O.F.) maximizes the

sum of frequencies of all active cores γjf weighted by the priority δi of the task assigned on

that core. To model the problem, we use two sets of binary decision variables:

Project No. 671578 ExaNoDe Deliverable D3.1 Page 24 of 27

We can formulate the following ILP model with three constraints to model the assignments

and the thermal bounds:

The constraint (3b) specifies that each of the K tasks (i=0…K) must be assigned to exactly

one core, j, that works at a single frequency, f. The constraint (3d) is needed to determine the

y decision variables which represent the idle cores. These variables are used in the constraint

(3f) in case there are less jobs than cores i.e., K ≤ N. Finally, the constraints (3f) guarantee that

the temperature of each core does not exceed Tmax during the next predicted interval (PIFSP).

In the last constraint, (3f) GS is a gain matrix with dimension N×N. This matrix is used to

calculate the increment of temperature of all the cores when a core is subjected to a constant

power input for PIFSP seconds. T0
l represents the dependency of the future temperature (PIFSP)

on the current core temperatures. These values can be derived from a state-space thermal

model, in future activities we will evaluate strategies to self-learn the thermal model from the

compute core. Ta is the ambient temperature. When the number of jobs is less than the number

of cores, the decision variable yi is used in conjunction with the vector of idle powers (�⃗�) to

add the idle power components.

4.1.6 The i-th Step Problem (ISP)

After the tasks have been assigned to the cores in the FSP, the TMC has to solve periodically

and at a finer time scale, the assignment problem of frequencies to cores. The ISP has the

same objective function as FSP as well as the same thermal model formulation. However, the

prediction interval for the ISP (PIISP) can in general be different from that of the FSP.

In contrast to the previous case, the model considers only active cores (T) because the thermal

constraints cannot be broken by an idle core. This reduces the overall complexity. Since in

this model, tasks have been already allocated by FPS, the tasks and cores do not need separate

variables, thus a priority is referred to a core.

Project No. 671578 ExaNoDe Deliverable D3.1 Page 25 of 27

The ISP model requires fewer constraints than FSP due the lower number of variables.

The constraint (4b) bounds each core to a selected frequency. The constraint (4d) guarantees

the thermal limits imposed on the model. The set A=ai contains the index of the active cores

and the set I=ii contains the index of Idle cores directly defined from the solution of FSP. The

set A ∩ I must be empty. In general, the ISP problem is computationally simpler than the FSP

problem due to the lower number of decision variables and constraints.

In future work, we plan to evaluate the trade-off between the overhead and the control

granularity, as well as strategies to self-learn the thermal model.

4.2 Parallel runtime support

This section was contributed by UOM.

4.2.1 Introduction

In order to maximize the efficiency of execution, both in terms of performance and energy,

and to exploit fully the massive parallelism provided by the ExaNoDe architecture, it is

essential to optimize performance-critical aspects of the runtime. In particular, UOM is

focusing on dynamic load balancing through work-stealing, dynamic scheduling for memory

locality and synchronization.

4.2.2 Design of preliminary software implementation

In the first year of the project, UOM has ported the current state-of-the-art implementation

[16] of work-stealing dynamic load-balancing based on Chase and Lev’s algorithm for intra-

node load balancing, as well as the fastest hybrid barrier synchronization implementation [15]

for a single node. This first step is essential even with the new Unimem memory model

because these algorithms are very sensitive to latency and therefore cannot rely on a uniform

view of the memory.

In a second step, UOM has implemented a functional unoptimized work-stealing library on

top of Unimem for inter-node load balancing, which is integrated with the intra-node

algorithm in the form of hierarchical work-stealing, whereby work is sought in widening

neighbourhoods. This implementation relies on the remote atomic operations provided by

Unimem, and for which UOM has developed an emulation layer that integrates with

FORTH’s RDMA emulation library. Furthermore, to minimize the overheads incurred by

memory transfers between nodes, UOM has developed locality-aware allocation and

Project No. 671578 ExaNoDe Deliverable D3.1 Page 26 of 27

scheduling optimizations that deliver above 94% locality and up to 99% locality and 5×

speedup over hierarchical work-stealing on 24 nodes [14]. While this study was conducted on

a classical NUMA machine, the results are likely to translate into similar locality benefits,

albeit with new tradeoffs that will require further investigation, on an ExaNoDe platform once

ported.

5 Concluding Remarks
This deliverable has described the runtime systems (OmpSs and OpenStream) and

communication libraries (GPI and MPI) being developed in the ExaNoDe project. Each

runtime system and library is described in detail together with the design of a preliminary

software implementation to take advantage of the unique characteristics of the ExaNoDe

architecture. Work is ongoing, and will be documented further in D3.2, which will be

delivered in M24.

OmpSs and OpenStream are distinct task-based programming models that extend OpenMP

with new directives. GPI is an open-source communication library that implements the

GASPI standard PGAS API. MPI is the standard message-passing API supported by all

serious HPC systems and employed by the vast majority of scientific applications. These

runtime systems and libraries will provide standard and portable programming interfaces, so

that an application can run efficiently on the ExaNoDe architecture.

Project No. 671578 ExaNoDe Deliverable D3.1 Page 27 of 27

6 References and Applicable Documents
[1] Dirk Pleiter et al, D2.1 Report on the ExaNoDe mini-applications, ExaNoDe project

deliverable D2.1, 2016.

[2] Nikolaos D. Kallimanis et al, D3.6 Design of the ExaNoDe Firmware, ExaNoDe project

deliverable D3.6, 2016.

[3] EUROSERVER project, EU FP7 project 610456. http://www.euroserver-project.eu.

[4] ExaNeSt project, EU H2020 project 671553. http://www.exanest.eu.

[5] AXIOM project, EU H2020 project 645496. http://www.axiom-project.eu.

[6] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell,

Xavier Martorell, Judit Planas: Ompss: a Proposal for Programming Heterogeneous

Multi-Core Architectures. Parallel Processing Letters 21(2): 173—193 (2011) 

[7] Javier Bueno, Judit Planas, Alejandro Duran, Rosa M. Badia, Xavier Martorell, Eduard

Ayguadé, Jesús Labarta. Productive Programming of GPU Clusters with OmpSs. 2012

IEEE 26th International Parallel & Distributed Processing Symposium (IPDPS),

pp.557—568, 2012.

[8] Simmedinger Christian, Mirco Rahn and Daniel Gruenewald. The GASPI API: A

failure tolerant PGAS API for asynchronous dataflow on heterogeneous architectures.

Sustained Simulation Performance 2014. Springer international Publishing, 2015. 17-

32.

[9] UNIMEM Mechanisms on the Euroserver Discrete Prototype Gen2 (64-bit). Document

version 1.2.1, July 27, 2016.

[10] Daniel Hackenberg, Robert Schöne, Thomas Ilsche, Daniel Molka, Joseph Schuchart,

and Robin Geyer. An energy efficiency feature survey of the Intel Haswell processor. In

Parallel and Distributed Processing

[11] Per Hammarlund, Rajesh Kumar, Randy B Osborne, Ravi Rajwar, Ronak Singhal,

Reynold D’Sa, Robert Chappell, Shiv Kaushik, Srinivas Chennupaty, Stephan Jourdan,

et al. Haswell: The fourth-generation Intel core processor. IEEE Micro, 34(2): 6–20,

2014.

[12] Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo

Cavazzoni, Davide Ceresoli, Guido L. Chiarotti, Matteo Cococcioni, Ismaila Dabo, et

al. Quantum ESPRESSO: a modular and open-source software project for quantum

simulations of materials. Journal of physics: Condensed matter, 21(39):395–502, 2009.

[13] J. M. Pérez, Rosa M. Badia and Jesus Labarta. A dependency-aware task-based

programming environment for multi-core architectures. In Proceedings of the 2008

IEEE International Conference on Cluster Computing, 29 September–1 October 2008,

Tsukuba, Japan (2008), pp. 142–151.

[14] Andi Drebes, Antoniu Pop, Karine Heydemann, Albert Cohen, Nathalie Drach:

Scalable Task Parallelism for NUMA: A Uniform Abstraction for Coordinated

Scheduling and Memory Management. PACT 2016: 125-137.

[15] Andrey Rodchenko, Andy Nisbet, Antoniu Pop, Mikel Luján:

Effective Barrier Synchronization on Intel Xeon Phi Coprocessor. Euro-Par 2015: 588-

600.

[16] Nhat Minh Lê, Antoniu Pop, Albert Cohen, Francesco Zappa Nardelli:

Correct and efficient work-stealing for weak memory models. PPOPP 2013: 69-80.

http://www.euroserver-project.eu/
http://www.exanest.eu/
http://www.axiom-project.eu/
http://dblp.uni-trier.de/pers/hd/d/Drebes:Andi
http://dblp.uni-trier.de/pers/hd/h/Heydemann:Karine
http://dblp.uni-trier.de/pers/hd/c/Cohen_0001:Albert
http://dblp.uni-trier.de/pers/hd/d/Drach:Nathalie
http://dblp.uni-trier.de/db/conf/IEEEpact/pact2016.html#DrebesPH0D16
http://dblp.uni-trier.de/pers/hd/r/Rodchenko:Andrey
http://dblp.uni-trier.de/pers/hd/n/Nisbet:Andy
http://dblp.uni-trier.de/pers/hd/l/Luj=aacute=n:Mikel
http://dblp.uni-trier.de/db/conf/europar/europar2015.html#RodchenkoNPL15
http://dblp.uni-trier.de/pers/hd/l/L=ecirc=:Nhat_Minh
http://dblp.uni-trier.de/pers/hd/c/Cohen_0001:Albert
http://dblp.uni-trier.de/pers/hd/n/Nardelli:Francesco_Zappa
http://dblp.uni-trier.de/db/conf/ppopp/ppopp2013.html#LePCN13

