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Executive Summary 
In this deliverable, we describe the runtime systems (OmpSs and OpenStream) and 

communication libraries (GPI and MPI) being developed in the ExaNoDe project.  These 

runtime systems and libraries will provide standard and portable programming interfaces so 

that an application can take advantage of the unique system characteristics of the ExaNoDe 

prototype without it having to be ported to the specific Unimem APIs defined in D3.6 [2]. 

OmpSs and OpenStream are extensions of OpenMP with new directives for offloading tasks. 

OmpSs uses directionality clauses on tasks and address-based tracking of data dependencies 

in the runtime system, and it supports heterogeneous devices such as GPUs and FPGAs. 

OpenStream has explicit dependencies in the source program marked using streams. Together, 

OmpSs and OpenStream explore two different trade-offs relating to performance and 

overheads vs. ease of programming. Both programming environments are being extended to 

leverage the Unimem architecture, with specific optimizations in the compiler (OpenStream) 

and runtime system (OmpSs and OpenStream).  

GPI is an open-source communication library that implements the GASPI standard PGAS 

API.  It provides a portable and lightweight API that leverages remote completion and one-

sided RDMA-driven communication, both being efficiently supported by the Unimem 

architecture. As such, GPI is an appropriate communication library to benefit from and 

evaluate the Unimem architecture. MPI is the standard message-passing API supported by all 

serious HPC systems and employed by the vast majority of scientific applications. Despite its 

importance, the development of a Unimem-optimized MPI library has proceeded slowly in the 

first year of the ExaNoDe project.  For this reason, we have transferred this activity from 

CEA to BSC in the project amendment. 

Finally, this deliverable describes other runtime support, specifically regarding thermal and 

power management and runtime libraries for performance-critical primitives.  These 

technologies will be made available and potentially integrated into the optimized 

implementations of GPI, OmpSs, OpenStream and MPI.  

In summary, this deliverable provides the design of a preliminary software implementation for 

each of the runtime systems and libraries. Since the precise hardware characteristics of the 

final prototype are not yet known, preliminary design has proceeded based on the general 

characteristics of the Unimem architecture. Work is ongoing, and will be described further in 

D3.2, “Runtime systems (OmpSs, OpenStream) and communication libraries (GPI, MPI): 

Advanced implementation customized for ExaNoDe architecture, interconnect and operating 

system,” to be issued in M24 of the project. 
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1 Introduction 
The ExaNoDe project is developing a unique HPC system architecture based on the Unimem 

architecture, which is also the basis for the related projects EUROSERVER [3] and 

ExaNeSt [4]. A system that implements Unimem consists of a number of computational nodes 

connected through a custom network. Each node typically contains multiple processing cores, 

which communicate amongst themselves using coherent shared memory as provided by the 

hardware. Distinct nodes communicate using Unimem’s global address space (GAS), which 

provides non-coherent load–store and RDMA access to any other remote node.  The Unimem 

hardware architecture is exposed to user space via the Global Shared Address Space (GSAS), 

user-space RDMA, mailbox and remote allocator APIs defined in D3.6 [2]. 

For easier programming, the application developers will be provided with standard and 

portable programming interfaces through the runtime systems and communication libraries 

described in this deliverable. This approach allows applications to take advantage of the 

characteristics of the ExaNoDe system architecture and Unimem architecture, without them 

having to be ported to a specific API and without the application developer needing to 

understand in detail the associated performance tradeoffs.  

The runtime systems and communication libraries are summarised in Table 1. OmpSs is a 

task-based programming model that extends OpenMP with new directives for asynchronous 

parallelism and heterogeneous devices such as GPUs and FPGAs. The OmpSs environment is 

built using the Mercurium source-to-source compiler and Nanos++ runtime system.  Nanos++ 

supports SMPs, GPUs, FPGAs and clusters. In ExaNoDe, the cluster implementation of 

Nanos++ is being leveraged as the basis for efficient runtime support for offloading tasks 

across nodes on the Unimem architecture, with automatic management of data transfers and 

data locality. OmpSs already supports offloading of tasks to FPGAs, using High-Level 

Synthesis (HLS), and it is being ported to the Xilinx UltraScale+ FPGA in the AXIOM 

Project. This FPGA support will be leveraged and evaluated on the ExaNoDe Proof of 

Concept (PoC).  

OpenStream is a task-based data-flow programming model also implemented as an extension 

to OpenMP, and designed for efficient and scalable data-driven execution. Whereas OmpSs 

uses directionality clauses on tasks and address-based tracking of data dependencies in the 

runtime system, OpenStream has explicit dependencies in the source program marked using 

streams. Compile-time transformations map each task’s memory accesses to private input and 

output buffers. The OpenStream runtime system controls memory allocation, task placement 

and RDMA memory transfers between tasks.  

GPI is an open-source communication library that implements the GASPI standard PGAS 

API.  It provides a portable and lightweight API that leverages remote completion and one-

sided RDMA-driven communication, both being efficiently supported by the Unimem 

architecture. As such, GPI is an appropriate communication library to benefit from and 

evaluate the Unimem architecture. 

MPI is the standard message-passing API supported by all serious HPC systems and 

employed by the vast majority of scientific applications. Efficient support for MPI is 

mandatory for any HPC system or prototype, and MPI support is an important output from 

ExaNoDe WP3 that is needed by the ExaNeSt project. Specifically, the scientific applications 

in ExaNeSt will require an efficient implementation of MPI. As described in Section 3.2, the 

development of MPI has proceeded slowly in the first year of the ExaNoDe project.  For this 

reason, we have responded by transferring this activity from CEA to BSC in the project 

amendment. 
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Finally, this deliverable describes other runtime support, specifically regarding thermal and 

power management and runtime libraries for performance-critical primitives.  These 

technologies will be made available and potentially integrated into the optimized 

implementations of GPI, OmpSs, OpenStream and MPI.  

The runtime systems and communication libraries are being prototyped and developed using 

(a) remote access to the multi-board prototype hosted at FORTH in Crete, which provides 

functional verification on real hardware, and (b) software emulation of the UNIMEM APIs 

using a software layer provided by FORTH and UOM. The latter provides the ability to 

perform substantial development work on a local machine. 

The runtime systems and communication library will be tested and evaluated using the mini-

applications from WP2 (from D2.1 [1]), as indicated in Table 1. 

Table 1: Comparison of runtime systems and communication libraries 

 MPI GPI-2 OmpSs (clusters) OpenStream 

Programming 

model 

Message 

passing 

PGAS Tasks with argument 

directionality 

(input/output) 

Tasks with explicit 

dependencies specified 

using streams 

Data visibility Local to MPI 

process 
Global Global Global 

Mapping work to 

nodes 

Manual Manual Runtime system Runtime system 

Language type API API Language extension 

(Pragmas) 

Language extension 

(Pragmas) 

Execution style MPMD MPMD SPSD / SPMD SPSD / SPMD 

Inter-node 

communication 

Explicit 

(message 

passing) 

Explicit 

(one-sided 

asynchronous) 

Implicit 

(runtime system based 

on argument 

directionality) 

Implicit 

(runtime system based on 

streams) 

Work scheduling Manual Manual Runtime system Runtime system 

Use of 

heterogeneity 

Explicit Explicit Automatic 

(runtime system) 

Explicit? 

Base language(s) C, C++, 

FORTRAN 

C, FORTRAN C, FORTRAN, CUDA C 

Started year 1991 2006 2002 (GridSs, OpenMP 

influence) 

2011 

Licence TBD GPL GPL GPL 

Anticipated 

method to exploit 

Unimem 

Zero-copy 

message 

passing 

Memory segments and 

one-sided 

communications using 

Unimem 

Cluster implementation 

using Unimem hardware 

(with single-copy data 

transfers) 

Unimem: one-sided 

communication with zero 

or one copy, depending on 

dynamic task placement 

decisions 

WP2 Mini-app All GPI test suite, separate 

stencil kernel 

MiniFE HydroC, MiniFE and 

NEST 
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2 Runtime systems 

2.1 OmpSs 

This section was contributed by BSC. 

2.1.1 Introduction to OmpSs 

The OmpSs programming model aims to provide productive support for developing parallel 

applications on heterogeneous systems, with a focus on ease of use and performance. OmpSs 

is a combination of principles from OpenMP and StarSs [13]. It extends OpenMP with 

directives for task-based asynchronous parallelism supporting address-based data 

dependencies. It also has support for heterogeneous architectures, including multiple address 

spaces and multiple versions of the same task to target different types of device (e.g. 

processor cores, GPUs, FPGAs and/or Intel Xeon Phis). 

The OmpSs environment, shown in Figure 1, is based on the Mercurium source-to-source 

compiler and Nanos++ runtime system. Mercurium translates the OmpSs directives (pragmas) 

into calls to the Nanos++ runtime API that create new tasks, wait on data, etc. The translated 

program is then compiled with the native C/C++/Fortran and CUDA/OpenCL compilers, and 

linked with the appropriate runtime libraries, including the Nanos++ runtime system.  At run 

time, Nanos++ tracks dependencies to build a dynamic dependency graph, and it schedules 

ready tasks onto the available devices, taking into account data locality, and automatically 

performing data transfers into and out of software-managed data caches. 

 

Figure 1: OmpSs toolflow: Mercurium source-to-source compiler and Nanos++ runtime 

2.1.2 OmpSs on distributed memory clusters 

OmpSs supports distributed memory clusters using the cluster version of Nanos++, which 

provides the shared memory abstraction to the user. Nanos++ for Clusters is implemented 

using a PGAS (Partitioned Global Address Space) API known as GASNet (Global Address 

Space Networking). GASNet is a language-independent low-level networking layer intended 

for implementing parallel global address space SPMD languages.  

The GASNet design is partitioned into two layers to simplify porting without sacrificing 

performance: the lower level is a narrow but general interface called the GASNet Core API, 

whose design is heavily influenced by Active Messages, and which is implemented directly 
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on top of the particular network architecture. The upper level is a wider and more expressive 

interface called the GASNet Extended API, which provides high-level operations such as one-

sided puts and gets and various collective operations. 

The cluster version of Nanos++ uses the GASNet Core and Extended APIs as a basis for 

implementing its shared memory abstraction, which allows users to execute tasks across 

parallel machines. The OmpSs scheduler is configured at runtime with the resource 

information. In the case of clusters, OmpSs also has to manage the user data across multiple 

nodes, which is accomplished using the GASNet Core API. OmpSs uses active messaging in 

order to send tasks and data to different nodes. The task dependencies are managed by the 

master node, which ensures correctness of the application execution. Figure 2 shows an 

overview of layers in OmpSs Cluster version. 

 

 

Figure 2: Unimem support layers in OmpSs runtime 

The Nanos++ runtime system uses calls to the Extended API functions of GASNet to 

implement the bulk of the communication work (thereby ensuring optimal performance across 

platforms). The runtime also uses the core active message interface to implement non-trivial 

language-specific or compiler-specific communication operations that would be inappropriate 

in a language-independent API (e.g. implementing distributed language-level locks, 

distributed garbage collection, collective memory allocation, etc.). The Active Message 

features of the GASNet Core API provide a powerful extensibility mechanism which allows 

OmpSs runtime to implement a wide variety of specialized communication operations in 

context of data, runtime objects, user arguments etc. 

2.1.3 Design of a preliminary software implementation 

BSC has ported GASNet to the Unimem APIs and tested it using the software emulator from 

FORTH.  Since the clusters version of Nanos++ uses mainly the GASNet Core API, this work 

has concentrated on implementing the Core API using a combination of MPI and Unimem 

RDMA.  

The design of GASNet is indicated in Figure 3. Several implementations of the GASNet Core 

API are available optimized for different network configurations, including general-purpose 

UDP, general-purpose MPI, MPI over Gemini interconnect, InfiniBand interconnect, and 

shared memory. GASNet also includes a reference network-independent implementation of 

the Extended API that uses only the Core API, which means that a basic network architecture 

implementation requires only an implementation of the Core API. It is possible, however, for 

optimized network implementations to bypass the reference Extended API functions, by 
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providing optimized functions that improve performance using specific hardware support (e.g. 

special network support for puts/gets or hardware-assisted broadcast). 

 

 

Figure 3: Layers in GASNet communication library 

The GASNet conduit for Unimem allows the OmpSs runtime to transparently use Unimem 

features, including RDMA between nodes. In large systems, it can revert to using MPI 

whenever Unimem features are not available. Since the current implementation of Nanos++ 

for Clusters uses only the Active Messaging support in the GASNet Core API, we have 

focussed so far on Active Messages, and other basic functionality (e.g. initialization 

functions). GASNet consists of three kinds of Active Messages i.e. short, medium and long. 

They also have their corresponding reply functions having similar syntax. A short description 

is given below: 

Short Active Message 

These messages carry only a few integer arguments (up to gasnet_AMMaxArgs())  

handler prototype: 

          void handler(gasnet_token_t token, 
                       gasnet_handlerarg_t arg0, ... gasnet_handlerarg_t argM-1); 
           

Medium Active Message 

In addition to integer arguments, these messages can can carry an opaque data payload (up to 

gasnet_AMMaxMedium() bytes in length), that will be made available to the handler when it is run on the 

remote node.  

handler prototype: 

          void handler(gasnet_token_t token, 
                       void *buf, size_t nbytes, 
                       gasnet_handlerarg_t arg0, ... gasnet_handlerarg_t argM-1); 
           

Long Active Message 

In addition to integer arguments, these messages can carry an opaque data payload (up to 

gasnet_AMMaxLong() bytes in length) which is destined for a particular predetermined address in the 

segment of the remote node (often implemented using RDMA hardware assistance)  

handler prototype: 

          void handler(gasnet_token_t token, 
                       void *buf, size_t nbytes, 
                       gasnet_handlerarg_t arg0, ... gasnet_handlerarg_t argM-1); 
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Figure 4: Active Message support in Unimem 

Active messages involve transfers of the arguments and payload to the destination node and 

execution of the handler in the destination node. This is done in clusters using the underlying 

MPI conduit. When Unimem is available between two nodes, the GASNet active message 

calls are translated into GASNet short messages, while the arguments and data payload are 

managed using Unimem RDMA calls. 

Figure 4 shows an implementation diagram for Active Messages for Unimem. Each call made 

to Active Message in the Unimem conduit gets converted into Unimem RDMA and short 

messages.  When the size of the RDMA is less than the system page size, which is 4 KB in 

most systems, a memory copy is used for transferring the arguments over Unimem. The 

Unimem driver takes care of the memory transfers. This approach is used in case of 

transferring the arguments. In the case of data payload, we use RDMA approach owing to 

performance benefits. 

2.1.4 Suitable ExaNode Mini-apps 

For validation of Nanos++ on the Unimem architecture, we will use the MiniFE mini-app 

from ExaNoDe WP2. MiniFE is a finite element mini-application that implements 

computational kernels representative of implicit finite-element applications. It assembles a 

sparse linear-system from the steady-state conduction equation on a brick-shaped problem 
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domain of linear 8-node hex elements. It then solves the linear-system using a simple un-

preconditioned conjugate-gradient algorithm. 

The application is also scalable using MPI as well as OpenMP. As a general approach we will 

be using OmpSs tasks in porting MiniFE to ExaNode architecture.  

2.2 OpenStream 

This section was contributed by UOM. 

2.2.1 Introduction to OpenStream 

OpenStream [14] is a task-parallel, data-flow programming model implemented as an 

extension to OpenMP, designed for efficient and scalable data-driven execution. Arbitrary 

dependence patterns can be used to exploit task, pipeline and data parallelism. Each data-flow 

dependence is semantically equivalent to a communication and synchronization event within 

an unbounded FIFO queue. Pragmatically, in the original shared-memory instantiation, this is 

implemented by compiling dependences as accesses to task buffers dynamically allocated at 

execution time: writes to streams result in writes to the buffers of the tasks consuming the 

data, while read accesses to streams by consumer tasks are translated to reads from their own, 

task-private buffers. 

Compared to the more restrictive data-parallel and fork-join concurrency models, task-parallel 

models enable improved scalability through load balancing, memory latency hiding, 

mitigation of the pressure on memory bandwidth, and as a side effect, reduced power 

consumption. Currently developed at UOM, OpenStream further takes advantage of the 

information provided by programmers on task dependences to aggressively optimize memory 

locality through dynamic task and data placement.  

2.2.2 Exploiting Unimem in OpenStream 

OpenStream relies on a private-by-default strategy for handling communication between 

tasks, which means that despite a shared-memory view from the programmer’s perspective, 

communication is more akin to message-passing than to concurrent shared-memory 

communication. This is made possible by requiring programmers to provide additional 

information on how data is accessed within tasks. This information is used at compile time to 

generate the appropriate modifications to memory accesses to achieve Dynamic Single 

Assignment (DSA). As shown in Figure 5, each task computes on data available in its input 

buffers and writes data in output buffers, each belonging to a unique task reading from them. 

This data-flow execution model is a perfect match for the Unimem memory model. The 

privatization of data communicated between tasks is key to enabling the runtime to fully 

control the locality of memory allocation and of task placement, as well as providing 

transparent RDMA memory transfers between tasks. 
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Figure 5: OpenStream task communication through private buffers 

Each task is associated with a set of incoming data dependences and a set of outgoing data 

dependences, as illustrated by Figure 5. Each data dependence is associated with a contiguous 

region of memory, the input buffer and output buffer, for incoming and outgoing 

dependences, respectively. The addresses of these buffers are collected in the task’s frame, 

akin to the activation frame storing a function’s arguments and local variables in the call 

stack. While the frame is unique and allocated at the task’s creation time, its input and output 

buffers may be placed on different NUMA nodes and allocated later in the life cycle of the 

task, but no later than the beginning of the execution of the task, reading from input buffers 

and writing into output buffers. Buffer placement and allocation time have a direct influence 

on locality and task-data affinity. 

Finally, OpenStream also relies on the inter-node Atomics provided in the Unimem memory 

model to implement low-level runtime algorithms, such as dynamic load balancing, inter-

node synchronization and locality-aware scheduling and memory allocation. This is further 

discussed in Section 4.2. 

2.2.3 Design of preliminary software implementation 

As the prototype boards have only become available with both RDMA and Atomics in M12, 

we have focused our initial work on a functional implementation on top of an emulation 

library for RDMA provided by FORTH and a functional emulation layer of inter-node 

Atomics that we have implemented at UOM (based on the API designed by FORTH for the 

Juno prototype) and made available to all WP3 partners. This initial implementation is now 

functional on the emulation platform, although as discussed in Section 2.2.2, the runtime is 

not yet optimized. Part of the difficulty for optimizing the implementation is that the specific 

tradeoffs of the ExaNoDe architecture cannot be captured easily with either emulation layers 

or Juno boards prototype. A preliminary optimization work will be conducted until we have 

access to more concrete  hardware. 

This first multi-node implementation was possible thanks to the collaboration between 

FORTH and UOM on the API and the emulation framework for RDMA and atomics. 

2.2.4 Suitable ExaNode Mini-apps 

OpenStream currently provides a front-end for C, but can be used with C++ with the 

appropriate wrappers. For this reason, we will target the HydroC, MiniFE and NEST Mini-

apps identified in D2.1. HydroC will be the primary objective once we have validated the 

OpenStream implementation using micro-benchmarks from the OpenStream suite. Although 

no in-depth evaluation of the Mini-apps has been done for OpenStream, the programming 

model is fully general and should be suitable for all C-based applications.  
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3 Communication libraries 

3.1 GPI 

This section was contributed by FHG. 

3.1.1 Introduction to GPI 

The Fraunhofer GPI (Global Address Space Programming Interface) open-source 

communication library is an implementation of the GASPI standard [4], freely available to 

application developers and researchers. GASPI stands for Global Address Space 

Programming Interface, and it is a Partitioned Global Address Space (PGAS) API that aims to 

provide extreme scalability, high flexibility and failure tolerance for parallel computing 

environments. 

GASPI aims to initiate a paradigm shift from bulk-synchronous two-sided communication 

patterns towards an asynchronous communication and execution model. It leverages remote 

completion and one-sided RDMA-driven communication in a Partitioned Global Address 

Space. The asynchronous communication enables a perfect overlap between computation and 

communication. The main design idea of GASPI is to have a lightweight API ensuring high 

performance, flexibility and failure tolerance. 

Traditionally GPI is used in visualization and seismic imaging applications. In the past years 

GPI has been ported to several scientific applications within publicly funded projects. With 

the objective of running on current Petascale systems, the Exascale-ready GPI prototype has 

been run at the Extreme Scale-out Workshop in 2015 at the Leibnitz Rechenzentrum (LRZ) in 

Munich, Germany. The results were presented at the XXXL workshop at the ISC15 

conference and the PARCO 2015 conference. Two applications have been developed using 

GPI: Reverse Time Migration (RTM), a seismic imaging technique and the ECED filter for 

noise removal from images. Strong scaling with over 90%/70% of parallel efficiency for the 

ECED filter/RTM application has been shown on the Haswell extension of the SuperMUC 

cluster on 84,000/43,000 cores. 

Inside nodes, parallelism is handled using threads. The GASPI API is thread-safe and allows 

each thread to post requests and wait for notifications. Any threading approach (POSIX 

threads, MCTP, OpenMP) is supported since it is orthogonal to the GASPI communication 

model. 

GPI supports interoperability with MPI in order to allow for incremental porting of 

applications. GPI supports this interoperability in a so-called mixed-mode, in which the MPI 

and GASPI interfaces can be mixed. 

An interface allowing interoperability concerning the memory management has recently been 

established in the GASPI standard. GASPI handles memory spaces in so-called segments, 

which are accessible from every thread of every GASPI process. The GASPI standard has 

been extended to allow the user to provide an already existing memory buffer as the memory 

space of a GASPI segment. This new function will allow future applications to communicate 

data from memory that is not allocated by the GASPI runtime system but provided to it (e.g. 

by MPI). 
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3.1.2 Exploiting Unimem in GPI 

 

 

Figure 6: GPI Building blocks for ExaNoDe architecture support 

In the context of the ExaNoDe hardware, GPI will be implemented using the RDMA 

primitives provided by the hardware and the interconnect. In the current design phase, the GPI 

Runtime reflects the interface description as given in [9]. To simplify the porting of the GPI 

Runtime, the GPI Kernel has been subdivided into Unimem dependent and Unimem 

independent modules, as shown in Figure 6. 

The Unimem independent modules (Runtime Environment like initialization and GPI Groups) 

can be developed/ported without knowledge of the final hardware characteristics and interface 

descriptions of the ExaNode/Unimem architecture. Both modules are able to run over a 

secondary network maintained using TCP/IP for data exchange. This makes it possible to start 

early implementations of these components within the ExaNoDe project. The final 

communication interface for these modules will be RDMA over Sockets from FORTH, the 

transport layer of Unimem. 

Currently both modules are in the process of being ported to the aarch64 architecture.  

All Unimem-dependent modules, such as pinned memory segments, global atomics (and 

related memory areas), passive RDMA, collectives and one-sided reads and writes managed 

by IO-queues are hard to implement without detailed knowledge of the behaviour of the 

interconnect interface. Therefore an emulation library has been developed that implements 

most of the current functionality as described in [9]. This emulation library allows early tests 

on a standard x86_64 SMP system without the need to have real prototype hardware available 

on site. In the next step each module will be ported separately to the ExaNoDe prototype 

system and linked against the Unimem system libraries. 

3.1.3 Design of preliminary software implementation 

In close collaboration with FORTH, Fraunhofer has developed a first RDMA User level API 

for Unimem suitable for all runtime systems. This first API will be extended as soon as 

further requirements are needed to implement certain functionalities. After evaluating some of 

the core components of the API on the ExaNoDe prototype a first mapping of the Unimem 

dependent GPI modules to the user level RDMA API was found. The following chapters 

describe a possible first design of GPI on top of that RDMA API. 
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3.1.3.1 GPI Segments 

Currently the ExaNoDe API of GPI supports a single RDMA capable segment with a 

maximum size of 256MB. GPI will relax this restriction in a sense that an application can 

allocate multiple GPI Segments within the 256MB. Furthermore GPI will also allocate some 

internal segments for collective operations. 

3.1.3.2 GPI IO-Queues 

GPI applications trigger one-sided RDMA reads and writes by placing communication tokens 

into IO-Queues. The status of a single token or a group of tokens can be determined at any 

time by calling a wait operation on a given queue. The user-level API currently returns a 

unique communication identifier for each communication call without using communication 

queues. To implement different IO-Queues on top of that functionality, a map will be 

assigned over all IO-Queues that combines communication identifiers and queue ids. To allow 

concurrent threads to access the IO-Queues at the same time, a global spinlock is used to 

protect all involved API calls. 

3.1.3.3 GPI Collectives 

In a first design GPI Collectives can be implemented by using internal GPI Segments and IO-

Queues as described in Sections 3.1.3.1 and 3.1.3.2. 

3.1.3.4 GPI Global Atomics 

Global Atomics can be built in a first instance by using directly the interface of the user-level 

RDMA API. However, all current available atomics are blocking and cannot be overlapped 

with computations. To be also scalable at large-scale a more efficient interface for global 

atomics has to be found and implemented as part of the user level API in a future version. 

3.1.3.5 GPI Passive RDMA 

Passive RDMA operations cannot be fully offloaded. They need some support from the 

Operating System so that passive waiting (sleeping) processes/threads can be informed when 

matching communication data is available. A first implementation can be built on top of the 

Unimem mailbox approach, where a process/thread can use system calls like select, poll or 

epoll to get signalled when an event occurs on the corresponding mailbox file descriptor. 

A couple of programs have been developed to test this first design of each individual module 

on the ExaNoDe prototype or by using the emulation library. 

3.1.4 Suitable ExaNode Mini-apps 

Beside the GPI test suite a stencil kernel application will be implemented to show off the 

strength of overlapped and offloaded data communication on ExaNoDe/Unimem.  

3.2 Message Passing Interface (MPI) 

This section was contributed by BSC. 

3.2.1 State of MPI port 

In the original Description of Action (DoA), the optimized port was to have been designed 

and implemented by CEA. Unfortunately CEA have been unable to dedicate sufficient 

resources to this activity, so at M12 the project took the decision to transfer this activity to 

BSC in the amendment, with a realistic (increased) budget from 9 to 24 PMs. With the new 

plan, a preliminary implementation is expected in M24, with the fully optimized 

implementation delivered by M36. This is therefore the same schedule as in the original DoA, 
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but due to the change in partner there has been negligible progress as of M12 to report in this 

deliverable. 

The implementation of MPI is crucial to the viability of ExaNoDe + ExaNeSt + ECOSCALE, 

and is especially important to the application partners in WP2 of ExaNeSt.  For this reason, 

the requirements for the optimized MPI port were discussed in detail in the ExaNode + 

ExaNeSt + ECOSCALE Workshop, 20 September 2016 in Trieste. The conclusions were as 

follows. 

3.2.2 MPI implementation: OpenMPI vs. MPICH 

BSC has expertise in MPICH and contacts with the development team at Argonne, so it 

proposes to optimize the MPICH implementation of MPI. This would be the generic MPICH 

codebase rather than an optimized implementation such as MVAMPICH. The version of MPI 

was discussed in detail in the Trieste Workshop, and although the application partners of 

ExaNeSt are currently using OpenMPI, they are willing to evaluate MPICH.  

3.2.3  Version of MPI specification 

The application codes in ExaNeSt are generally MPI-2 or MPI-1.2, with certain cosmology 

codes moving to MPI-3, due to the better one-sided puts and gets for RDMA, sparse 

collectives and non-blocking collectives. There is a considerable diversity among codes in 

terms of their use of point-to-point vs. collective operations and blocking vs. non-blocking.  

For this reason, ongoing collaboration is required between the ExaNoDe MPI implementation 

effort and ExaNeSt.  It will certainly not be sufficient to develop a “basic” implementation 

with optimized implementations of only the most basic MPI-1 calls. 

3.2.4 Other technical issues 

The partners in ExaNeSt have agreed to collect performance data from their applications in 

order to help with performance tuning, such as eager vs. rendezvous threshold, fan-in / fan-out 

factor and choice of fast paths in the implementation. 

3.3 Suitable ExaNoDe Mini-apps 

All ExaNoDe mini-apps considered in D2.2 (Report on the ExaNoDe mini-applications) [1] 

are either implemented in MPI or they have MPI versions: Abinit, BQCD, HydroC, 

KKRnano, MiniFE and NEST. The four chosen applications (BQCD, HydroC, KKRnano and 

MiniFE) are therefore suitable for evaluation of the MPI port. Moreover, the MPI port will be 

developed in consultation with the application partners of ExaNeSt and will be made available 

to them for implementation and performance evaluation using production scientific 

applications, in particular those from INAF and INFN. 
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4 Other runtime support 
This section describes the advances in thermal and power management and runtime libraries 

for performance-critical primitives (e.g. scalable synchronization primitives and work-stealing 

load balancing). The intention is that these technologies will be made available and 

potentially integrated into the optimized ports of GPI, OmpSs, OpenStream and MPI.  

4.1 Power and thermal control 

This section was contributed by ETHZ. 

In this section we discuss an extension of the runtime of the programming models for thermal 

and power control. This deliverable reports an assessment of the thermal effects visible in 

high performance computing processors, the available power control knobs, and their 

interactions with a programming model. We choose MPI for our analysis. We then propose a 

thermal controller formulation which is suitable for accounting workload properties as well as 

workload unbalance. In future works we will evaluate the achievable gain and the design 

trade-offs. 

4.1.1 Introduction 

Chiplet integration coupled with the high computational power and heterogeneous resources 

which characterize the ExaNoDe architecture will challenge conventional thermal and power 

management strategies. Variations of the application load will translate into highly variable 

power consumption and generate temperature hotspots within the severely thermally 

constrained, vertically stacked Chiplet environment. A holistic thermal and power 

management approach is therefore crucial. The approach should combine the fast reaction 

times, which are typical of hardware control loops, with the global view from software 

management.  

4.1.2 Design of preliminary software implementation 

Within this task ETHZ is exploring and designing software-based distributed power and 

thermal controllers embedded in the runtime libraries which will adapt the operating 

conditions according to application demand and silicon thermal evolution, taking into account 

variability and heterogeneity in both workloads and hardware. The controllers will leverage 

hardware sensors and be aware of the existing hardware control loops to maximize precision 

and minimize reaction time.  

We use as a proxy to evaluate these policies a state-of-the-art processor used in several 

supercomputer installations.  

4.1.2.1 Power and Thermal Management  

The power management states of computing elements are divided into sub-groups. The 

P-States include dynamic voltage and frequency (DVFS) operating points that target reduction 

of active power. C-States instead target the reduction of idle power. Both P-States and 

C-States are numbered from 0 to n, where a higher number means greater savings in power. 

However, in the case of C-States this means also longer transitions in and out of the state. In 

recent Intel architectures P-States can be selected independently for each core [10]. C-States 

are instead defined independently for cores and the “uncore” (package) region. The P-States 

are handled by the Linux OS by means of software frequency governors. C-States are 

triggered from CPU’s firmware, but the OS can provide hints on the appropriate C-State to 

the hardware through OS idle governors. Figure 7 shows the different architecture impacts 

and dependencies for the different cores and package C-States.  
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We will use this analysis in Task 3.3 to evaluate the design trade-offs as well as to quantify 

the achievable energy-saving gains. 

 
Green: valid configuration for Core and Package C-States 

Red: invalid configuration 

Figure 7: Core and Package C-States and matrix showing valid and invalid combinations 

We used a high performance computing node equipped with two Intel Haswell E5-2630 v3 

CPUs, each with eight cores and 2.4 GHz nominal clock speed and 130 W Thermal Design 

Power (TDP) [11].  The node runs the SMP CentOS Linux distribution version 7.0. 

4.1.2.2 Thermal Model 

To understand the thermal properties of the node we have executed three main stress tests, on 

which we have: 

(i) Kept the system in idle and measured the power and each core temperature after ten 

minutes, 

(ii) Executed Robert Redelmeier’s cpuburn power virus,1 in sequence on each core of 

each socket in the node, leaving the remaining cores idle. We maintained a constant 

workload for ten minutes and measured the power consumption and temperature. This 

test was used to extract the maximum gradient between cores. 

(iii) Executed the power virus for ten minutes on all the cores e simultaneously and we 

measured the temperature and the power consumption. 

 

In all previous tests, the temperature and power values were measured by periodically reading 

the machine specific registers, with Turbo mode disabled. Results of our analysis are reported 

in Table 2. 

Table 2: Thermal Model 

Condition Value 

Average temperature - Idle cores 15.93 °C 

Average temperature - Active cores 33.39 °C 

Gradient - Idle cores 4.47 °C 

Gradient - Active cores 4.79 °C 

Gradient - Active core vs. idle cores 8.05 °C 

Time to reach steady state 120 s 

4.1.2.3 Power Model 

In addition to the previous tests we have re-executed the power virus in different 

configurations (number of cores executing the power virus, turbo enabled/disabled; different 

                                                 
1 cpuburn power virus by Robert Redelmeier: it takes advantage of the superscalar architecture to 
maximize the CPU power consumption 
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frequencies) while limiting C-States.2 We maintained each configuration for ten minutes and 

measured the power consumed by each CPU. 

Table 3: Power Model active power   

 P-State (all in C-State C0) 

 Turbo Max freq. Min freq. 

Puncore 17.13 W 17.13 W 12.76 W 

Pcore 6.38 W 5.47 W 3.16 W 

 

Table 4: Power Model idle power 

 C-State 

 C1 C2 C3 

Puncore 12.76 W 11.90 W 11.84 W 

Pcore 1.32 W 0.38 W 0.00 W 

 

Table 3 and Table 4 report the power split between core and uncore regions. Table 3 shows 

them for different P-States (Turbo, Max frequency and Min frequency), while in active 

C-State C0. Table 4 shows the power consumption in different C-States. The power 

consumption of the uncore (in C0 mode) is the same for Turbo and Max Frequency because 

the uncore component is not affected by the Turbo frequencies. Scaling down the frequency 

(to Min freq.), however, reduces the uncore power. In contrast, the core power consumption 

scales proportionally with the frequency. Idle power can be seen in Table 4, from which we 

see that C1 further reduces the power consumption by 58% compared with C0 C-State at 

minimum frequency, and that C3 significantly cuts the idle power by the 71% for the core but 

only marginally for the uncore. C6 instead zeroes the core power but reduces the uncore 

power by just 1%. Clearly these results show that to reduce the energy consumption, the 

parallel programming runtime (i.e. MPI) should prefer C1 and C3 states to save energy during 

idle intervals (communication phases) instead of P-States (DVFS). 

4.1.3 MPI runtime and workload characterization 

We use as a workload Quantum ESPRESSO [12] to match a real life workload scientific 

application to evaluate power and thermal management opportunities in Galileo. Quantum 

ESPRESSO is a software suite for molecular dynamics. Its main computational kernels 

include dense parallel linear algebra and 3D parallel FFT, which are both relevant for many 

HPC applications. In detail, we use a Car–Parrinello (CP) simulation, which prepares an 

initial configuration of a thermally disordered crystal of chemical elements by randomly 

displacing the atoms from their ideal crystalline positions. This simulation consists of a 

number of computation kernels that have to be executed in the correct order. 

We use Intel MPI Library 5.1 for communication and the Intel ICC/IFORT 16.0 compiler. 

The Intel MPI runtime tries to achieve maximum performance by adopting by default a busy-

waiting (BW MPI) policy that forces CPU polling on the network fabric controller during 

communication phases and synchronization points. Alternately programmers can specify an 

interrupt-based (IB MPI) communication. With IB communication, HPC applications release 

the processor during communication phases, giving control to the OS, which triggers an idle 

state (C-State). To isolate the impact of deep C-States from the different communication 

mechanisms we also run the interrupt-based communication while limiting the deepest C-

State to C1 (IB MPI - C1 limited).  

                                                 
2 C-States in Intel architectures can be limited through dedicated machine-specific registers 
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Table 5: Quantum ESPRESSO - Energy 

 BW MPI IB MPI IB MPI (C1 limited) 

Execution Time 261.52 s 283.48 s 283.48 s 

Average Power 68.19 W 62.91 W 63.22 W 

Energy 17.90 J 17.83 J 18.04 J 

% time in C1 0.00% 9.74% 15.80% 

% time in C2 0.00% 0.66% 0.00% 

% time in C3 0.00% 5.40% 0.00% 

Total idleness 0.00% 15.80% 15.80% 

 

Table 5 shows the results of Quantum ESPRESSO using the different MPI runtime 

configurations. For each runtime configuration, we measure the execution time, average 

power consumption and total energy for both sockets. For also calculate the idleness, which 

represents the percentage of idle time, and we use hardware counters to measure the 

percentage of time in each C-State: C1, C2 and C3. For Busy Waiting (BW) MPI, we can see 

that, since it uses busy-waiting communication, 0% of its total time is spent in C1, C2 and C3, 

and the total idleness is 0%. In contrast, Interrupt-Based (IB) MPI has a significant percentage 

of idleness, which includes time in deep C-States. Due to the hardware policy, which triggers 

transitions to C-States using time-outs, the specific communication phase can finish before 

the deepest C-State is reached (C6). For this reason, Quantum ESPRESSO consumes 8% 

lower power with IB MPI compared with BW MPI. Using IB MPI does not, however, cause a 

significant energy reduction, due to a large increase in execution time. This could be caused 

by (i) the C-State transition time, as well as by (ii) additional communication latencies related 

to IB MPI communication. The IB MPI (C1 limited) configuration uses only the C1 idle state, 

which is characterized by a negligible transition time. When comparing its execution time 

with IB MPI we notice that there is no difference. This demonstrates that the slowdown in IB 

MPI in comparison with BW MPI is due to the IB MPI implementation rather than C-State 

transition times. 

This is the first important insight of our work: the current IB MPI implementation has to be 

improved in order to exploit power-saving opportunities offered by the increased agility in 

C-state management of modern Intel CPUs.  

4.1.4 HPC Optimal Thermal Control 

In this section we present a mathematical Integer Linear Programming (ILP) formulation, 

namely the Optimal Thermal Controller (OTC), which matches all the requirements of high-

performance computing systems and proactive thermal control: (i) limiting the future 

temperature of all cores below a critical threshold by selecting the best operating point; (ii) 

maximizing application performance (frequency of all the cores); (iii) reducing power 

consumption during communication phases; (iv) providing knobs to match the computation to 

communication ratio with the clock frequency. 

The OTC operates at the node level and is composed of two main components: the thermal-

aware task mapper and controller and an energy-aware MPI wrapper. The thermal-aware task 

mapper and controller (TMC) is triggered: (a) after the job scheduler has deployed the parallel 

application on the reserved portion of the HPC machine for the job execution, and (b) 

periodically with period Ts. At scheduling point (a) the TMC specifies the task-to-core 

mapping, which will be maintained until the application completes. Clearly, if a critical task is 

mapped to a thermally inefficient core this will more likely cause a severe degradation of the 

final application performance. To abstract this requirement, we use a per-task priority level. 

Higher priority means higher impact of task performance on the final application. The root 

MPI task (0) is always the most critical as it acts as collector/gatherer. At scheduling point 
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(b), the TMC selects the optimal frequency to be applied to the different cores for the 

following interval in order to maintain the future temperature of all cores below a maximum 

limited value. The energy-aware MPI wrapper (EAW) is event-driven and it acts as a bridge 

between the MPI synchronization primitives and the core's frequency selection. This 

programming model interface is reactive and reduces the operating point (lower 

frequency/deeper C-State) when the MPI runtime is busy waiting. When the execution flow 

returns to the application code, the frequency/operating point is restored to the one selected by 

the Thermal Controller. 

 

Figure 8: Operation of Thermal-aware Task Mapper and Controller 

4.1.5 The First Step Problem (FSP) 

This optimization problem is solved during the initialization of the application. Its purpose is 

to allocate the application tasks on the available cores and select for each of them the 

maximum frequency that meets the thermal constraint Tmax in the prediction interval (PIFSP). 

The prediction interval (i.e. the time horizon) plays an important role, indeed if it is too short, 

the Thermal Controller (TMC) cannot predict the impact of a task allocation on long term 

core temperature as its effect is hidden by the thermal capacitance, making the problem 

trivial. On the contrary, if the predicted interval is too long the TMC cannot take advantage of 

the thermal capacitance for sustaining short time power burst. 

In addition, not all tasks have the same priority. This is matched in the optimization model 

which maximizes the frequency of the highest priority task penalizing the frequencies of other 

ones, the optimization problem considers K tasks to be assigned to N cores, where the number 

of tasks is less than or equal to the number of cores; i.e. K < N. Each core can be configured 

with a frequency in a set of M level of frequencies. The Object Function (O.F.) maximizes the 

sum of frequencies of all active cores γjf weighted by the priority δi of the task assigned on 

that core. To model the problem, we use two sets of binary decision variables: 
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We can formulate the following ILP model with three constraints to model the assignments 

and the thermal bounds: 

 
The constraint (3b) specifies that each of the K tasks (i=0…K) must be assigned to exactly 

one core, j, that works at a single frequency, f. The constraint (3d) is needed to determine the 

y decision variables which represent the idle cores. These variables are used in the constraint 

(3f) in case there are less jobs than cores i.e., K ≤ N. Finally, the constraints (3f) guarantee that 

the temperature of each core does not exceed Tmax during the next predicted interval (PIFSP). 

In the last constraint, (3f) GS is a gain matrix with dimension N×N. This matrix is used to 

calculate the increment of temperature of all the cores when a core is subjected to a constant 

power input for PIFSP seconds. T0
l represents the dependency of the future temperature (PIFSP) 

on the current core temperatures. These values can be derived from a state-space thermal 

model, in future activities we will evaluate strategies to self-learn the thermal model from the 

compute core. Ta is the ambient temperature. When the number of jobs is less than the number 

of cores, the decision variable yi is used in conjunction with the vector of idle powers (�⃗�) to 

add the idle power components. 

4.1.6 The i-th Step Problem (ISP) 

After the tasks have been assigned to the cores in the FSP, the TMC has to solve periodically 

and at a finer time scale, the assignment problem of frequencies to cores. The ISP has the 

same objective function as FSP as well as the same thermal model formulation. However, the 

prediction interval for the ISP (PIISP) can in general be different from that of the FSP. 

In contrast to the previous case, the model considers only active cores (T) because the thermal 

constraints cannot be broken by an idle core. This reduces the overall complexity. Since in 

this model, tasks have been already allocated by FPS, the tasks and cores do not need separate 

variables, thus a priority is referred to a core. 
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The ISP model requires fewer constraints than FSP due the lower number of variables. 

 
The constraint (4b) bounds each core to a selected frequency. The constraint (4d) guarantees 

the thermal limits imposed on the model. The set A=ai contains the index of the active cores 

and the set I=ii contains the index of Idle cores directly defined from the solution of FSP. The 

set A ∩ I must be empty. In general, the ISP problem is computationally simpler than the FSP 

problem due to the lower number of decision variables and constraints. 

In future work, we plan to evaluate the trade-off between the overhead and the control 

granularity, as well as strategies to self-learn the thermal model. 

4.2 Parallel runtime support 

This section was contributed by UOM. 

4.2.1 Introduction 

In order to maximize the efficiency of execution, both in terms of performance and energy, 

and to exploit fully the massive parallelism provided by the ExaNoDe architecture, it is 

essential to optimize performance-critical aspects of the runtime. In particular, UOM is 

focusing on dynamic load balancing through work-stealing, dynamic scheduling for memory 

locality and synchronization. 

4.2.2 Design of preliminary software implementation 

In the first year of the project, UOM has ported the current state-of-the-art implementation 

[16] of work-stealing dynamic load-balancing based on Chase and Lev’s algorithm for intra-

node load balancing, as well as the fastest hybrid barrier synchronization implementation [15] 

for a single node. This first step is essential even with the new Unimem memory model 

because these algorithms are very sensitive to latency and therefore cannot rely on a uniform 

view of the memory. 

In a second step, UOM has implemented a functional unoptimized work-stealing library on 

top of Unimem for inter-node load balancing, which is integrated with the intra-node 

algorithm in the form of hierarchical work-stealing, whereby work is sought in widening 

neighbourhoods. This implementation relies on the remote atomic operations provided by 

Unimem, and for which UOM has developed an emulation layer that integrates with 

FORTH’s RDMA emulation library. Furthermore, to minimize the overheads incurred by 

memory transfers between nodes, UOM has developed locality-aware allocation and 
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scheduling optimizations that deliver above 94% locality and up to 99% locality and 5× 

speedup over hierarchical work-stealing on 24 nodes [14]. While this study was conducted on 

a classical NUMA machine, the results are likely to translate into similar locality benefits, 

albeit with new tradeoffs that will require further investigation, on an ExaNoDe platform once 

ported. 

5 Concluding Remarks 
This deliverable has described the runtime systems (OmpSs and OpenStream) and 

communication libraries (GPI and MPI) being developed in the ExaNoDe project. Each 

runtime system and library is described in detail together with the design of a preliminary 

software implementation to take advantage of the unique characteristics of the ExaNoDe 

architecture. Work is ongoing, and will be documented further in D3.2, which will be 

delivered in M24. 

OmpSs and OpenStream are distinct task-based programming models that extend OpenMP 

with new directives. GPI is an open-source communication library that implements the 

GASPI standard PGAS API. MPI is the standard message-passing API supported by all 

serious HPC systems and employed by the vast majority of scientific applications. These 

runtime systems and libraries will provide standard and portable programming interfaces, so 

that an application can run efficiently on the ExaNoDe architecture. 
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