

Project No. 671578 ExaNoDe Deliverable D2.5 Page i of iii

D2.5

 Report on the HPC application bottlenecks

Workpackage: 2 Co-Design for Exa-scale HPC System

Author(s): Kazi Asifuzzaman BSC

 Milan Radulovic BSC

 Petar Radojkovic BSC

Authorized by Petar Radojkovic BSC

Reviewer Said Derradji Atos

Reviewer Denis Dutoit CEA

Reviewer Luca Benini ETH

Dissemination

Level
Public

Date Author Comments Version Status

2017-03-07 Milan

Radulovic

 V1.0 Draft

2017-03-27 Milan

Radulovic

Updates based on the comments by

the reviewers.

V1.1 Final

Ref. Ares(2017)1714476 - 30/03/2017

Project No. 671578 ExaNoDe Deliverable D2.5 Page ii of iii

Executive Summary

Designing a balanced HPC system requires understanding of the dominant performance

bottlenecks of present state-of-the-art HPC systems and workloads. In the context of the

ExaNoDe Task 2.5, we analysed main performance bottlenecks in relevant industrial HPC

applications running on a state-of-the-art HPC platform.

We base our analyses on three important bottlenecks in modern state-of-the-art HPC systems:

percentage of execution time spent in inter-process communication, memory bandwidth

congestion and FLOPs performance. The presented analysis points out the degree of

performance degradation for each of the bottlenecks, while running realistic HPC workloads.

Inter-process communication may account for a significant portion of the overall execution

time, and may be one of the main limitations for the application scalability. As applications

scale-out to higher number of processes (strong-scaling case), our analysis shows that the

percentage of time spent in inter-process communication increases, reaching more than 50%

in some cases. Therefore, in the context of the project, it is important to deploy new

approaches for inter-process communication such as UNIMEM, and also to decrease the load

imbalance, using various programming models which are presented in WP3.

Memory bandwidth became one of the main performance bottlenecks in current HPC systems.

We measured memory bandwidth usage of relevant HPC applications and the results show

that majority of applications experience memory bandwidth congestion. Therefore, our

recommendation would be to look toward high-bandwidth memories, such as High Bandwidth

Memory (HBM) or Hybrid Memory Cube (HMC), in future ExaNoDe architectures.

Additionally, we show the importance of the methodology used to measure application

bandwidth – the analysis of average (end-to-end) bandwidth measurements could mislead, and

fail to detect segments of applications that are bandwidth intensive. Afterwards, we analyzed

the effects of scaling-out on memory bandwidth and found that strong scaling reduces

pressure on memory bandwidth, mainly due to the increment in the inter-process

communication time, and better utilization of the on-chip caches.

In addition to memory bandwidth congestion, it is important to understand FLOPs vs.

memory bandwidth ratio, and which parameter is the dominant performance bottleneck. We

analyze FLOPS vs. memory bandwidth ratio for HPC applications by using a roofline model.

Our results show that the majority of HPC applications is not bounded by the CPU processing

capacity, i.e. that memory bandwidth is a dominant performance bottleneck. When scaling

out, due to strong scaling, on-chip caches are utilized better so application operational

intensity and GFLOPs performance increase. Again, using average values for memory

bandwidth and GFLOPs performance is misleading and can show wrong trends. For future

Exascale HPC platforms, we recommend building a balanced system, with higher Byte-per-

FLOP ratio, as it becomes more and more important to assess performance of HPC systems

based on memory system.

Project No. 671578 ExaNoDe Deliverable D2.5 Page iii of iii

Table of Contents

1 Introduction .. 4
2 Experimental .. 5

2.1 Hardware platform ... 5

2.2 Applications ... 5
2.3 Methodology .. 6

3 Inter-process communication time ... 9
3.1 Introduction and background ... 9
3.2 Results.. 9

3.3 Summary .. 11
4 Memory bandwidth .. 12

4.1 Introduction and background ... 12
4.1.1 Memory wall .. 13

4.1.2 Memory latency vs. memory bandwidth .. 13
4.2 Results.. 15
4.3 Summary .. 17

5 Memory bandwidth vs. FLOPs analysis ... 18

5.1 Introduction and background ... 18
5.2 Methodology: Plotting the roofline ... 19
5.3 Results.. 20

5.4 Summary .. 24
6 Conclusions .. 25
7 References .. 26

Project No. 671578 ExaNoDe Deliverable D2.5 Page 6 of 26

Application Area of science Problem size No. of processes used

ALYA
Computational

mechanics
27 million element mesh 16–1024

BQCD
Particle

physics
322 × 642 lattice 64–1024

CP2K
Computational

chemistry

Energy calculation of

1024 waters
128–1024

NEMO
Ocean

modelling

12° global configuration

4322×3059 grid
512–1024

Table 1: List of the UEABS applications used in the study

The High-Performance Linpack (HPL) benchmark is the most widely recognized and

discussed metric for ranking of HPC systems for more than 20 years. HPL measures the

sustained floating-point rate (GFLOP/s) for solving a dense system of linear equations using

double-precision floating-point arithmetic [3]. The linear system is randomly generated, with

a user-specified size, so that the user can scale the problem size to achieve the best

performance on a given system. The documentation recommends setting a problem size that

uses approximately 80% of available memory.

High-Performance Conjugate Gradients (HPCG) benchmark is introduced as a complement to

HPL and TOP500 rankings, since the community questions whether HPL is a good proxy for

production applications. HPCG is based on an iterative sparse-matrix conjugate gradient

kernel with double-precision floating-point values [4]. HPCG is a good representative of HPC

applications governed by differential equations, which tend to have much stronger needs for

high memory bandwidth, low latency, and accessing data using irregular patterns. As with

HPL, the user can scale the problem size to achieve the best performance on a given system.

2.3 Methodology

Input dataset: Most of the applications from UEABS package come with two input datasets.

Smaller datasets (Test Case A) are deemed suitable for Tier-1 systems up to about 1000

strong x86 cores, and larger datasets (Test Case B) target Tier-0 systems up to about 10,000

cores. In most of our experiments we used smaller dataset (Test Case A).

Number of processes: The experiments were executed for various number of processes, from

16 up to 1024 by powers-of-two, i.e., 16, 32, 64, 128, 256, 512, and 1024. The 16 processes

correspond to a single MareNostrum node, while 1024 processes are marked by the

benchmark developers as the scalability limit for the input dataset Test Case A. BQCD, CP2K

and NEMO applications have memory capacity requirements that exceed the available

memory on a single node. This limits the lowest number of processes we use in the

experiments, e.g., BQCD cannot be executed with less than 64 processes (four nodes). For

each UEABS application the process range used in the experiments is listed in Table 1.

Representative application segments: In order to perform complex numerical computations

in a reasonable time, HPC applications use numerous simultaneous processes. Trace

collection and simulation of entire HPC application that comprises thousands of processes is

infeasible. Therefore, first we had to analyze the application structure to detect relatively

smaller application segments that are good representative of its overall behavior.

Project No. 671578 ExaNoDe Deliverable D2.5 Page 7 of 26

Figure 1 illustrates a visual representation of an HPC application’s execution (ALYA). For

different application processes (Process 1–1024), the figure shows repetitive appearance of

MPI Barrier — the iterating function of the application. At the beginning of the execution (up

to approximately 17s in Figure 1), in the pre-processing phase, HPC applications divide and

distribute input data over a large number of processes. Then, in the application main

computational phase, through a series of computation bursts and inter-process communication

steps, the intermediate calculations are combined into final results. In production runs of HPC

applications, duration of the pre-processing phase is negligible, so the analysis of HPC

applications is primarily focused on the main computational phase. Since the computation

naturally follows repetitive patterns, characterizing of a sample of the iterations is sufficient to

characterize the entire application execution [5]. For each group of experiments (in each of

the following sections), we specify whether we analyze the whole main computational phase

or select a number of its iterations. This depends mainly on the amount of data that profiling

generates, and the overhead that it introduces. While coarse-grain measurements are

performed on the whole main computational phase, the detailed measurements cover a

selected number of its iterations.

Figure 1: Repetitive behavior of HPC applications: ALYA, 1024 processes

Measurements granularity: Each HPC application process is comprised of a series of

computation bursts and inter-process communication steps, MPI calls in the case of the

UEABS applications, as illustrated in Figure 2. Computation bursts and communication calls

have a different nature and use of the CPU resources. Communication calls in general show

much lower FLOPs and memory bandwidth utilization w.r.t. the computation bursts, lowering

the average applications utilization of these resources. This would mean that an application

with FLOPs or memory bandwidth intensive computational bursts could still have a moderate

or low average utilization of these resources, e.g. if significant portion of the overall

execution time is spent in the communication. Therefore, in addition to the average

application behavior based on the end-to-end measurements, we also determine the behavior

at computation burst level. For each application process, we generate a series of timestamped

measurements and gather more than 10000 samples per process.

Project No. 671578 ExaNoDe Deliverable D2.5 Page 10 of 26

Figure 3: Portion of the total execution time that is spent in the inter-process communication. UEABS

applications, Test Case A input dataset (strong scaling).

In addition to strong scaling analysis, presented in Figure 3, it would be also important to

perform a weak scaling analysis, i.e., to analyze application communication time when both

the number of processes and input dataset size are increased. This, however, is not a trivial

task, as discussed in Section 2.3. The best that we could do toward the weak scaling analysis

was to analyze UEABS applications solving two problem sizes, Test Case A and Test Case

B.1 Out of UEABS applications under study, we successfully installed the Test Case B only

for ALYA.

Figure 4 plots the inter-process communication time for ALYA application running Test Case

A and Test Case B. The Test Case B results start from the 256 processes (16 compute nodes)

because the input dataset is so large that it does not fit into fewer nodes.2 The results in

Figure 4 show that the Test Case B results keep the same trend as for Test Case A, but the

curve is shifted toward larger number of processes. This conclusion is aligned with the

analysis of Zivanovic et al. [10] that analyze scalability of UEABS applications running both

input datasets.

1 Please, note that, for various UEABS applications, Test Case A and Test Case B solve fundamentally
different problems, making them not 100% suitable for the weak scaling analysis.
2 It could not fit into fewer power -of-two nodes, i.e. it could not fit in to 8 nodes (128 processes).

Project No. 671578 ExaNoDe Deliverable D2.5 Page 11 of 26

Figure 4: Portion of the total execution time that is spent in the inter-process communication. ALYA

application, Test Case A and Test Case B input datasets (weak-like scaling).

3.3 Summary

Our results show that inter-process communication time accounts for a significant portion of

the overall execution time, between 13% and 62% for the UEABS applications running on the

MareNostrum supercomputer. Our experiments also show that application scale-out increases

the portion of the time spent in the communication, having a negative impact on the

application scalability.

Project No. 671578 ExaNoDe Deliverable D2.5 Page 13 of 26

4.1.1 Memory wall

Hitting the memory wall refers to the fact that memory latency (relative to the CPU

frequency) is so large that the processor spends significant number of cycles waiting for the

data from the memory [15]. First time defined in 1995, the memory wall still imposes a

fundamental limitation to system performance.

One set of arguments maintained that latency-tolerance techniques like out of order execution,

wider instruction issue, and speculative techniques such as hardware prefetching would bridge

the processor-memory performance gap. Even in combination, though, such approaches can

mask the latency of only so many memory requests — the exact numbers depend on the sizes

of the hardware structures. The cost and complexity of implementing larger and larger

structures proved prohibitive, and although latency tolerance pushed the memory wall back, it

did not save us.

Another set of arguments maintained that new memory technologies like Intelligent RAM

(IRAM) and Rambus Direct DRAM (RDRAM), or high-bandwidth 3D-stacked DRAM, such

as High Bandwidth Memory (HBM) or Hybrid Memory Cube (HMC). DRAM manufacturers

and IP providers continue to deliver high-performance DRAM technology, but they have not

(yet) removed the memory wall. Main memory latency remains limited by the speed of the

underlying storage technology, and even increases in the complex memory system solutions.5

To summarize, technological evolutions and revolutions notwithstanding, the memory wall

(main memory access latency) has imposed a fundamental limitation to system performance

for more than 20 years.

4.1.2 Memory latency vs. memory bandwidth

Although memory latency and bandwidth are often described as independent concepts, they

are inherently interrelated. Actually, understanding the relation between the memory latency

and bandwidth is essential for understanding the memory bandwidth impact on the

performance, as we will describe in this section.

When analyzing memory access latency, we distinguish between single-access latency in an

idle system and latency in a system with many concurrent memory accesses. Idle-system

memory latency includes time spent in the CPU (load/store queues, cache memory, and on-

chip memory controller), memory channel, and main memory. Full-system memory latency

considers shared-resource contention among concurrent memory requests. Figure 5 shows the

impact of such contention on memory latency [16]. The x-axis shows application memory

bandwidth, and the y-axis shows the corresponding latency. This bandwidth-latency curve has

three regions that are limited by the maximum sustainable bandwidth (which is 65-75% of the

maximum theoretical bandwidth). First, when application bandwidth utilization is low,

memory latency is constant and equals idle-system latency. This region has few concurrent

memory requests and negligible contention for shared hardware resources. The memory

latency is constant until application bandwidth reaches approximately 40% of the maximum

sustainable bandwidth. After this point, increases in bandwidth needs also increase contention

for shared resources, which, in turn, increases memory latency. Memory latency increases

5 In D2.2 we analyze main memory latency of the KNL system comprising 3D -stacked DRAM.

Project No. 671578 ExaNoDe Deliverable D2.5 Page 14 of 26

linearly with application bandwidth usage in the region between 40% and 80% of the

sustainable bandwidth.

Figure 5: Memory access latency versus used memory bandwidth

Further increases in application bandwidth needs cause severe collisions among concurrent

memory requests, and thus memory latency increases exponentially.6

In the context of our analysis, it is sufficient to understand that if the application memory

bandwidth is below approximately 40% of the sustained one, the collision between concurrent

memory requests (memory bandwidth collision) has no impact on the main memory latency

and the overall performance. If the application memory bandwidth exceeds the 40% of the

sustained one, the memory bandwidth starts to impact the memory latency and the overall

performance. When the application uses more than 80% of the sustained memory bandwidth,

the collisions between concurrent memory requests increases memory latency severely, i.e.

memory bandwidth becomes a serious performance bottleneck.

In order to understand whether memory bandwidth is a performance bottleneck in the state-of-

the-art HPC systems, we measure the memory bandwidth usage of the representative HPC

applications and position it in the corresponding region of the memory latency vs. bandwidth

curve.

6 The dependency between memory latency and bandwidth could be also explained by the queueing
theory; the trend presented in Figure 5 corresponds to the mean system response time as a function of
request arrival rate.

Project No. 671578 ExaNoDe Deliverable D2.5 Page 15 of 26

4.2 Results

Figure 6: Average memory bandwidth of HPC applications under study

Figure 6 plots the memory bandwidth usage of the HPL, HPCG and the UEABS applications.

HPL and HPCG are executed on a single MareNostrum server (16 processes), while UEABS

applications are executed on the lowest possible number of cores (servers), 16 cores for

ALYA, 64 for BQCD, 128 for CP2K and 512 for NEMO [10]. The memory bandwidth usage

is plotted relative to the sustained memory bandwidth.

HPCG has high bandwidth utilization, 97% of the sustained, which confirms the analysis of

[10] that memory bandwidth is a serious bottleneck. On the other extreme, HPL has a low

bandwidth utilization, 25% of the sustained one (HPL is CPU bound application that makes a

good use of the on-chip caches). ALYA and CP2K use 38% and 28% of the sustained

bandwidth meaning that the memory bandwidth should have no performance impact. BQCD

and NEMO, reach around 70% of the sustained bandwidth, meaning that the memory

bandwidth collision could lead to some performance penalties; however, they are still out of

the exponential part of the bandwidth latency curve (>80% of the sustained memory

bandwidth) in which the bandwidth becomes a serious performance bottleneck.

The presented results are based on the average application memory bandwidth.7 However,

since the application behavior may change during the execution, we also analyze in-time

memory bandwidth measurements (sampled on computational bursts, as explained in Section

2.3).

In our experiments, we measured used memory bandwidth per process, at CPU computation

burst granularity. We compare average bandwidth usage and burst memory bandwidth usage.

This way, the analysis shows that even when average bandwidth appears low, periods of high

memory bandwidth bursts present a performance bottleneck.

7 In the main computational phase, see the Section 2.

Project No. 671578 ExaNoDe Deliverable D2.5 Page 16 of 26

Figure 7: Memory bandwidth usage of HPC applications on computation burst granularity

Figure 7 shows memory bandwidth measurements for the HPL and HPCG benchmarks, and

UEABS applications, similar to the Figure 6 (previous one). However, instead of showing

average memory bandwidth, in Figure 7 we plot the percent of the execution time that the

application spends in a given bandwidth utilization rate. Red portion of the bars represents the

percentage of total execution time where the applications use high bandwidth (more than 80%

of the sustainable limit). Purple section of the bars represent moderately high bandwidth

usage period of the execution. Blue and lighter blue shades indicate the time periods where

applications use lower bandwidth.

As depicted in Figure 7, HPCG has a serious bottleneck with 97% of the execution time in the

segment 80-100% of the sustained bandwidth. HPL has no memory bandwidth problems, with

>90% of the execution time in 0-40% segment. BQCD and NEMO suffer high and

moderately high (respectively) bandwidth congestion during more than half of the total

execution time. CP2K shows no major bandwidth bottlenecks during most of its execution

time. Perhaps, ALYA has the most interesting scenario among all the applications. In Figure 6

(end-to-end measurements), ALYA seemed to be a bandwidth insensitive application. But, the

detailed in-time measurements (sampled on computational bursts, as explained in Section 2.3)

show 55% of its execution time, it is a bandwidth bound, with application bandwidth of above

80% of the sustained limit.

Therefore, we can emphasize to have the in-time measurements. Average end-to-end

measurements could be misleading. Two out of four UEABS applications experience

performance penalties due to the memory bandwidth collision. BQCD and ALYA are

memory bandwidth bound in most of their execution time.

Project No. 671578 ExaNoDe Deliverable D2.5 Page 17 of 26

Figure 8: Memory bandwidth usage when scaling-out, at computation burst granularity

We further analyze application’s bandwidth usage by scaling out. Figure 8 shows the impact

on bandwidth usage when applications are executed on 1024 cores. All applications suffer

less bandwidth congestion when executed on 1024 cores. BQCD’s bandwidth bound

execution period decreased to 26% from 65%. NEMO’s bandwidth stress improves slightly

when scaled out to 1024 cores. ALYA eliminates almost its entire bandwidth bottleneck by

scaling out to 1024 cores. CP2K also shows promising improvement in bandwidth usage after

scaling out.

4.3 Summary

Our results indeed show that memory bandwidth is a serious bottleneck in state-of-the-art

HPC systems. In addition to this, we show the importance of methodology used to measure

application bandwidth – the analysis of average (end-to-end) bandwidth measurements could

mislead, and fail to detect applications that are bandwidth intensive in some of their segments.

Our analysis also shows that as the applications scale-out (strong scaling), pressure on

memory bandwidth reduces, it is mainly due to the increment of the inter-process

communication time, and the fact that smaller per-process data may show better utilization of

the on-chip caches.

