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Executive Summary 
 

Designing a balanced HPC system requires understanding of the dominant performance 

bottlenecks of present state-of-the-art HPC systems and workloads. In the context of the 

ExaNoDe Task 2.5, we analysed main performance bottlenecks in relevant industrial HPC 

applications running on a state-of-the-art HPC platform. 

We base our analyses on three important bottlenecks in modern state-of-the-art HPC systems: 

percentage of execution time spent in inter-process communication, memory bandwidth 

congestion and FLOPs performance. The presented analysis points out the degree of 

performance degradation for each of the bottlenecks, while running realistic HPC workloads. 

Inter-process communication may account for a significant portion of the overall execution 

time, and may be one of the main limitations for the application scalability. As applications 

scale-out to higher number of processes (strong-scaling case), our analysis shows that the 

percentage of time spent in inter-process communication increases, reaching more than 50% 

in some cases. Therefore, in the context of the project, it is important to deploy new 

approaches for inter-process communication such as UNIMEM, and also to decrease the load 

imbalance, using various programming models which are presented in WP3. 

Memory bandwidth became one of the main performance bottlenecks in current HPC systems. 

We measured memory bandwidth usage of relevant HPC applications and the results show 

that majority of applications experience memory bandwidth congestion. Therefore, our 

recommendation would be to look toward high-bandwidth memories, such as High Bandwidth 

Memory (HBM) or Hybrid Memory Cube (HMC), in future ExaNoDe architectures. 

Additionally, we show the importance of the methodology used to measure application 

bandwidth – the analysis of average (end-to-end) bandwidth measurements could mislead, and 

fail to detect segments of applications that are bandwidth intensive. Afterwards, we analyzed 

the effects of scaling-out on memory bandwidth and found that strong scaling reduces 

pressure on memory bandwidth, mainly due to the increment in the inter-process 

communication time, and better utilization of the on-chip caches.  

In addition to memory bandwidth congestion, it is important to understand FLOPs vs. 

memory bandwidth ratio, and which parameter is the dominant performance bottleneck. We 

analyze FLOPS vs. memory bandwidth ratio for HPC applications by using a roofline model. 

Our results show that the majority of HPC applications is not bounded by the CPU processing 

capacity, i.e. that memory bandwidth is a dominant performance bottleneck. When scaling 

out, due to strong scaling, on-chip caches are utilized better so application operational 

intensity and GFLOPs performance increase. Again, using average values for memory 

bandwidth and GFLOPs performance is misleading and can show wrong trends. For future 

Exascale HPC platforms, we recommend building a balanced system, with higher Byte-per-

FLOP ratio, as it becomes more and more important to assess performance of HPC systems 

based on memory system. 
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Application Area of science Problem size No. of processes used 

ALYA 
Computational 

mechanics 
27 million element mesh 16–1024 

BQCD 
Particle 

physics 
322 × 642 lattice 64–1024 

CP2K 
Computational 

chemistry 

Energy calculation of 

1024 waters 
128–1024 

NEMO 
Ocean 

modelling 

12° global configuration 

4322×3059 grid 
512–1024 

Table 1: List of the UEABS applications used in the study 

 

The High-Performance Linpack (HPL) benchmark is the most widely recognized and 

discussed metric for ranking of HPC systems for more than 20 years. HPL measures the 

sustained floating-point rate (GFLOP/s) for solving a dense system of linear equations using 

double-precision floating-point arithmetic [3]. The linear system is randomly generated, with 

a user-specified size, so that the user can scale the problem size to achieve the best 

performance on a given system. The documentation recommends setting a problem size that 

uses approximately 80% of available memory.  

 

High-Performance Conjugate Gradients (HPCG) benchmark is introduced as a complement to 

HPL and TOP500 rankings, since the community questions whether HPL is a good proxy for 

production applications. HPCG is based on an iterative sparse-matrix conjugate gradient 

kernel with double-precision floating-point values [4]. HPCG is a good representative of HPC 

applications governed by differential equations, which tend to have much stronger needs for 

high memory bandwidth, low latency, and accessing data using irregular patterns. As with 

HPL, the user can scale the problem size to achieve the best performance on a given system.  

 

2.3 Methodology 
 

Input dataset: Most of the applications from UEABS package come with two input datasets. 

Smaller datasets (Test Case A) are deemed suitable for Tier-1 systems up to about 1000  

strong x86 cores, and larger datasets (Test Case B) target Tier-0 systems up to about 10,000 

cores. In most of our experiments we used smaller dataset (Test Case A).  

 

Number of processes: The experiments were executed for various number of processes, from 

16 up to 1024 by powers-of-two, i.e., 16, 32, 64, 128, 256, 512, and 1024. The 16 processes 

correspond to a single MareNostrum node, while 1024 processes are marked by the 

benchmark developers as the scalability limit for the input dataset Test Case A. BQCD, CP2K 

and NEMO applications have memory capacity requirements that exceed the available 

memory on a single node. This limits the lowest number of processes we use in the 

experiments, e.g., BQCD cannot be executed with less than 64 processes (four nodes). For 

each UEABS application the process range used in the experiments is listed in Table 1. 

 

Representative application segments: In order to perform complex numerical computations 

in a reasonable time, HPC applications use numerous simultaneous processes. Trace 

collection and simulation of entire HPC application that comprises thousands of processes is 

infeasible. Therefore, first we had to analyze the application structure to detect relatively 

smaller application segments that are good representative of its overall behavior. 
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Figure 1 illustrates a visual representation of an HPC application’s execution (ALYA). For 

different application processes (Process 1–1024), the figure shows repetitive appearance of 

MPI Barrier — the iterating function of the application. At the beginning of the execution (up 

to approximately 17s in Figure 1), in the pre-processing phase, HPC applications divide and 

distribute input data over a large number of processes. Then, in the application main 

computational phase, through a series of computation bursts and inter-process communication 

steps, the intermediate calculations are combined into final results. In production runs of HPC 

applications, duration of the pre-processing phase is negligible, so the analysis of HPC 

applications is primarily focused on the main computational phase. Since the computation 

naturally follows repetitive patterns, characterizing of a sample of the iterations is sufficient to 

characterize the entire application execution [5]. For each group of experiments (in each of 

the following sections), we specify whether we analyze the whole main computational phase 

or select a number of its iterations. This depends mainly on the amount of data that profiling 

generates, and the overhead that it introduces. While coarse-grain measurements are 

performed on the whole main computational phase, the detailed measurements cover a 

selected number of its iterations. 

 

 

Figure 1: Repetitive behavior of HPC applications: ALYA, 1024 processes 

 

Measurements granularity: Each HPC application process is comprised of a series of 

computation bursts and inter-process communication steps, MPI calls in the case of the 

UEABS applications, as illustrated in Figure 2. Computation bursts and communication calls 

have a different nature and use of the CPU resources. Communication calls in general show 

much lower FLOPs and memory bandwidth utilization w.r.t. the computation bursts, lowering 

the average applications utilization of these resources. This would mean that an application 

with FLOPs or memory bandwidth intensive computational bursts could still have a moderate 

or low average utilization of these resources, e.g. if significant portion of the overall 

execution time is spent in the communication. Therefore, in addition to the average 

application behavior based on the end-to-end measurements, we also determine the behavior 

at computation burst level. For each application process, we generate a series of timestamped 

measurements and gather more than 10000 samples per process. 
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Figure 3: Portion of the total execution time that is spent in the inter-process communication. UEABS 

applications, Test Case A input dataset (strong scaling). 

In addition to strong scaling analysis, presented in Figure 3, it would be also important to 

perform a weak scaling analysis, i.e., to analyze application communication time when both 

the number of processes and input dataset size are increased. This, however, is not a trivial 

task, as discussed in Section 2.3. The best that we could do toward the weak scaling analysis 

was to analyze UEABS applications solving two problem sizes, Test Case A and Test Case 

B.1 Out of UEABS applications under study, we successfully installed the Test Case B only 

for ALYA.  

 

Figure 4 plots the inter-process communication time for ALYA application running Test Case 

A and Test Case B. The Test Case B results start from the 256 processes (16 compute nodes) 

because the input dataset is so large that it does not fit into fewer nodes.2   The results in 

Figure 4 show that the Test Case B results keep the same trend as for Test Case A, but the 

curve is shifted toward larger number of processes. This conclusion is aligned with the 

analysis of Zivanovic et al. [10] that analyze scalability of UEABS applications running both 

input datasets. 

 

                                                 
1 Please, note that, for various UEABS applications, Test Case A and Test Case B solve fundamentally 
different problems, making them not 100% suitable for the weak scaling analysis.  
2 It could not fit into fewer power -of-two nodes, i.e. it could not fit in to 8 nodes (128 processes).  
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Figure 4: Portion of the total execution time that is spent in the inter-process communication. ALYA 

application, Test Case A and Test Case B input datasets (weak-like scaling).  

 

3.3 Summary 
 

Our results show that inter-process communication time accounts for a significant portion of 

the overall execution time, between 13% and 62% for the UEABS applications running on the 

MareNostrum supercomputer. Our experiments also show that application scale-out increases 

the portion of the time spent in the communication, having a negative impact on the 

application scalability.  
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4.1.1 Memory wall  

 

Hitting the memory wall refers to the fact that memory latency (relative to the CPU 

frequency) is so large that the processor spends significant number of cycles waiting for the 

data from the memory [15]. First time defined in 1995, the memory wall still imposes a 

fundamental limitation to system performance.  

 

One set of arguments maintained that latency-tolerance techniques like out of order execution, 

wider instruction issue, and speculative techniques such as hardware prefetching would bridge 

the processor-memory performance gap. Even in combination, though, such approaches can 

mask the latency of only so many memory requests — the exact numbers depend on the sizes 

of the hardware structures. The cost and complexity of implementing larger and larger 

structures proved prohibitive, and although latency tolerance pushed the memory wall back, it 

did not save us.  

 

Another set of arguments maintained that new memory technologies like Intelligent RAM 

(IRAM) and Rambus Direct DRAM (RDRAM), or high-bandwidth 3D-stacked DRAM, such 

as High Bandwidth Memory (HBM) or Hybrid Memory Cube (HMC). DRAM manufacturers 

and IP providers continue to deliver high-performance DRAM technology, but they have not 

(yet) removed the memory wall. Main memory latency remains limited by the speed of the 

underlying storage technology, and even increases in the complex memory system solutions.5 

 

To summarize, technological evolutions and revolutions notwithstanding, the memory wall 

(main memory access latency) has imposed a fundamental limitation to system performance 

for more than 20 years. 

 

4.1.2 Memory latency vs. memory bandwidth 

 

Although memory latency and bandwidth are often described as independent concepts, they 

are inherently interrelated. Actually, understanding the relation between the memory latency 

and bandwidth is essential for understanding the memory bandwidth impact on the 

performance, as we will describe in this section.  

 

When analyzing memory access latency, we distinguish between single-access latency in an 

idle system and latency in a system with many concurrent memory accesses. Idle-system 

memory latency includes time spent in the CPU (load/store queues, cache memory, and on-

chip memory controller), memory channel, and main memory. Full-system memory latency 

considers shared-resource contention among concurrent memory requests. Figure 5 shows the 

impact of such contention on memory latency [16]. The x-axis shows application memory 

bandwidth, and the y-axis shows the corresponding latency. This bandwidth-latency curve has 

three regions that are limited by the maximum sustainable bandwidth (which is 65-75% of the 

maximum theoretical bandwidth). First, when application bandwidth utilization is low, 

memory latency is constant and equals idle-system latency. This region has few concurrent 

memory requests and negligible contention for shared hardware resources. The memory 

latency is constant until application bandwidth reaches approximately 40% of the maximum 

sustainable bandwidth. After this point, increases in bandwidth needs also increase contention 

for shared resources, which, in turn, increases memory latency. Memory latency increases 

                                                 
5 In D2.2 we analyze main memory latency of the KNL system comprising 3D -stacked DRAM. 
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linearly with application bandwidth usage in the region between 40% and 80% of the 

sustainable bandwidth. 

  

Figure 5: Memory access latency versus used memory bandwidth 

  

Further increases in application bandwidth needs cause severe collisions among concurrent 

memory requests, and thus memory latency increases exponentially.6 

 

In the context of our analysis, it is sufficient to understand that if the application memory 

bandwidth is below approximately 40% of the sustained one, the collision between concurrent 

memory requests (memory bandwidth collision) has no impact on the main memory latency 

and the overall performance. If the application memory bandwidth exceeds the 40% of the 

sustained one, the memory bandwidth starts to impact the memory latency and the overall 

performance. When the application uses more than 80% of the sustained memory bandwidth, 

the collisions between concurrent memory requests increases memory latency severely, i.e. 

memory bandwidth becomes a serious performance bottleneck.   

  

In order to understand whether memory bandwidth is a performance bottleneck in the state-of-

the-art HPC systems, we measure the memory bandwidth usage of the representative HPC 

applications and position it in the corresponding region of the memory latency vs. bandwidth 

curve.  

 

 

 

 

 

 

 

 

 

 

 

                                                 
6 The dependency between memory latency and bandwidth could be also explained by the queueing 
theory; the trend presented in Figure 5 corresponds to the mean system response time as a function of 
request arrival rate. 
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4.2 Results 
 

 

Figure 6: Average memory bandwidth of HPC applications under study 

 

Figure 6 plots the memory bandwidth usage of the HPL, HPCG and the UEABS applications. 

HPL and HPCG are executed on a single MareNostrum server (16 processes), while UEABS 

applications are executed on the lowest possible number of cores (servers),  16 cores for 

ALYA, 64 for BQCD, 128 for CP2K and 512 for NEMO [10]. The memory bandwidth usage 

is plotted relative to the sustained memory bandwidth.  

 

HPCG has high bandwidth utilization, 97% of the sustained, which confirms the analysis of 

[10] that memory bandwidth is a serious bottleneck. On the other extreme, HPL has a low 

bandwidth utilization, 25% of the sustained one (HPL is CPU bound application that makes a 

good use of the on-chip caches). ALYA and CP2K use 38% and 28% of the sustained 

bandwidth meaning that the memory bandwidth should have no performance impact. BQCD 

and NEMO, reach around 70% of the sustained bandwidth, meaning that the memory 

bandwidth collision could lead to some performance penalties; however, they are still out of 

the exponential part of the bandwidth latency curve (>80% of the sustained memory 

bandwidth) in which the bandwidth becomes a serious performance bottleneck.     

 

The presented results are based on the average application memory bandwidth.7 However, 

since the application behavior may change during the execution, we also analyze in-time 

memory bandwidth measurements (sampled on computational bursts, as explained in Section 

2.3). 

 

In our experiments, we measured used memory bandwidth per process, at CPU computation 

burst granularity. We compare average bandwidth usage and burst memory bandwidth usage. 

This way, the analysis shows that even when average bandwidth appears low, periods of high 

memory bandwidth bursts present a performance bottleneck. 

 

 

 

 

                                                 
7 In the main computational phase, see the Section 2. 
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Figure 7: Memory bandwidth usage of HPC applications on computation burst granularity 

 

Figure 7 shows memory bandwidth measurements for the HPL and HPCG benchmarks, and 

UEABS applications, similar to the Figure 6 (previous one). However, instead of showing 

average memory bandwidth, in Figure 7 we plot the percent of the execution time that the 

application spends in a given bandwidth utilization rate. Red portion of the bars represents the 

percentage of total execution time where the applications use high bandwidth (more than 80% 

of the sustainable limit). Purple section of the bars represent moderately high bandwidth 

usage period of the execution. Blue and lighter blue shades indicate the time periods where 

applications use lower bandwidth. 

 

As depicted in Figure 7, HPCG has a serious bottleneck with 97% of the execution time in the 

segment 80-100% of the sustained bandwidth. HPL has no memory bandwidth problems, with 

>90% of the execution time in 0-40% segment. BQCD and NEMO suffer high and 

moderately high (respectively) bandwidth congestion during more than half of the total 

execution time. CP2K shows no major bandwidth bottlenecks during most of its execution 

time. Perhaps, ALYA has the most interesting scenario among all the applications. In Figure 6 

(end-to-end measurements), ALYA seemed to be a bandwidth insensitive application. But, the 

detailed in-time measurements (sampled on computational bursts, as explained in Section 2.3) 

show 55% of its execution time, it is a bandwidth bound, with application bandwidth of above 

80% of the sustained limit. 

        

Therefore, we can emphasize to have the in-time measurements. Average end-to-end 

measurements could be misleading. Two out of four UEABS applications experience 

performance penalties due to the memory bandwidth collision. BQCD and ALYA are 

memory bandwidth bound in most of their execution time.  
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Figure 8: Memory bandwidth usage when scaling-out, at computation burst granularity 

 

We further analyze application’s bandwidth usage by scaling out. Figure 8 shows the impact 

on bandwidth usage when applications are executed on 1024 cores. All applications suffer 

less bandwidth congestion when executed on 1024 cores. BQCD’s bandwidth bound 

execution period decreased to 26% from 65%. NEMO’s bandwidth stress improves slightly 

when scaled out to 1024 cores. ALYA eliminates almost its entire bandwidth bottleneck by 

scaling out to 1024 cores. CP2K also shows promising improvement in bandwidth usage after 

scaling out. 

 

4.3 Summary 
 

Our results indeed show that memory bandwidth is a serious bottleneck in state-of-the-art 

HPC systems. In addition to this, we show the importance of methodology used to measure 

application bandwidth – the analysis of average (end-to-end) bandwidth measurements could 

mislead, and fail to detect applications that are bandwidth intensive in some of their segments. 

Our analysis also shows that as the applications scale-out (strong scaling), pressure on 

memory bandwidth reduces, it is mainly due to the increment of the inter-process 

communication time, and the fact that smaller per-process data may show better utilization of 

the on-chip caches. 

 

 

  




















